Why isn't the black hole white? The 2019 Stack Overflow Developer Survey Results Are InDoes matter accumulate just outside the event horizon of a black hole?Ramifications of black hole stellar systemHow does an accreting black hole acquire magnetic fields?Could we verify the structure of a black hole by observing an orbiting object?Black hole without singularity?Black Hole growthShouldn't we not be able to see some black holes?M87 Black hole. Why can we see the blackness?What part of the EM spectrum was used in the black hole image?Why don't we see the gas behind the black hole?

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

How much of the clove should I use when using big garlic heads?

What is this sharp, curved notch on my knife for?

Inverse Relationship Between Precision and Recall

A word that means fill it to the required quantity

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

writing variables above the numbers in tikz picture

How to display lines in a file like ls displays files in a directory?

How do PCB vias affect signal quality?

Why are there uneven bright areas in this photo of black hole?

Did the UK government pay "millions and millions of dollars" to try to snag Julian Assange?

"as much details as you can remember"

Worn-tile Scrabble

What is this business jet?

Correct punctuation for showing a character's confusion

Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?

How to support a colleague who finds meetings extremely tiring?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Likelihood that a superbug or lethal virus could come from a landfill

Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?

How to translate "being like"?

Keeping a retro style to sci-fi spaceships?

How did passengers keep warm on sail ships?

The difference between dialogue marks



Why isn't the black hole white?



The 2019 Stack Overflow Developer Survey Results Are InDoes matter accumulate just outside the event horizon of a black hole?Ramifications of black hole stellar systemHow does an accreting black hole acquire magnetic fields?Could we verify the structure of a black hole by observing an orbiting object?Black hole without singularity?Black Hole growthShouldn't we not be able to see some black holes?M87 Black hole. Why can we see the blackness?What part of the EM spectrum was used in the black hole image?Why don't we see the gas behind the black hole?










5












$begingroup$


I recently saw the first image of a black hole. As I understood, it is covered with bright, hot matter. In this case, how can we see the black disk (event horizon), instead of a bright disk due to the matter surrounding the black hole? Or is the matter around the black hole disposed in a disk shape and the astronomers got lucky that the disk was not oriented towards Earth?










share|improve this question







New contributor




Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    See Veritasium’s explanation at youtube.com/watch?v=zUyH3XhpLTo. As for why it’s an accretion disk and not an “accretion sphere”, see the video by PBS Space Time explaining why gravity turns some objects into spheres and others into disks at youtube.com/watch?v=Aj6Kc1mvsdo.
    $endgroup$
    – Roman Odaisky
    3 hours ago















5












$begingroup$


I recently saw the first image of a black hole. As I understood, it is covered with bright, hot matter. In this case, how can we see the black disk (event horizon), instead of a bright disk due to the matter surrounding the black hole? Or is the matter around the black hole disposed in a disk shape and the astronomers got lucky that the disk was not oriented towards Earth?










share|improve this question







New contributor




Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    See Veritasium’s explanation at youtube.com/watch?v=zUyH3XhpLTo. As for why it’s an accretion disk and not an “accretion sphere”, see the video by PBS Space Time explaining why gravity turns some objects into spheres and others into disks at youtube.com/watch?v=Aj6Kc1mvsdo.
    $endgroup$
    – Roman Odaisky
    3 hours ago













5












5








5





$begingroup$


I recently saw the first image of a black hole. As I understood, it is covered with bright, hot matter. In this case, how can we see the black disk (event horizon), instead of a bright disk due to the matter surrounding the black hole? Or is the matter around the black hole disposed in a disk shape and the astronomers got lucky that the disk was not oriented towards Earth?










share|improve this question







New contributor




Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I recently saw the first image of a black hole. As I understood, it is covered with bright, hot matter. In this case, how can we see the black disk (event horizon), instead of a bright disk due to the matter surrounding the black hole? Or is the matter around the black hole disposed in a disk shape and the astronomers got lucky that the disk was not oriented towards Earth?







black-hole matter disk






share|improve this question







New contributor




Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 11 hours ago









Cristian MCristian M

261




261




New contributor




Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Cristian M is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    See Veritasium’s explanation at youtube.com/watch?v=zUyH3XhpLTo. As for why it’s an accretion disk and not an “accretion sphere”, see the video by PBS Space Time explaining why gravity turns some objects into spheres and others into disks at youtube.com/watch?v=Aj6Kc1mvsdo.
    $endgroup$
    – Roman Odaisky
    3 hours ago
















  • $begingroup$
    See Veritasium’s explanation at youtube.com/watch?v=zUyH3XhpLTo. As for why it’s an accretion disk and not an “accretion sphere”, see the video by PBS Space Time explaining why gravity turns some objects into spheres and others into disks at youtube.com/watch?v=Aj6Kc1mvsdo.
    $endgroup$
    – Roman Odaisky
    3 hours ago















$begingroup$
See Veritasium’s explanation at youtube.com/watch?v=zUyH3XhpLTo. As for why it’s an accretion disk and not an “accretion sphere”, see the video by PBS Space Time explaining why gravity turns some objects into spheres and others into disks at youtube.com/watch?v=Aj6Kc1mvsdo.
$endgroup$
– Roman Odaisky
3 hours ago




$begingroup$
See Veritasium’s explanation at youtube.com/watch?v=zUyH3XhpLTo. As for why it’s an accretion disk and not an “accretion sphere”, see the video by PBS Space Time explaining why gravity turns some objects into spheres and others into disks at youtube.com/watch?v=Aj6Kc1mvsdo.
$endgroup$
– Roman Odaisky
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

The black hole image that you saw is not a photograph in the traditional sense. A traditional photograph is created when visible light strikes a digital sensor or film in a camera.



The image of M87 that you saw was created by an elaborate, complex, globe-spanning and labor-intensive operation.



To start with, the telescopes used were radio telescopes. These radio telescopes "see" radio waves with a 1.3mm wavelength like we see visible light, which has a wavelength from violet (380 nanometers) to red (700 nanometers). Think of it like infrared vision or night vision.



Eight radio telescopes all over the globe were pointed toward the same black hole at the same time over the course of four days. Each radio telescope collected an enormous amount of data by observing the black hole in the radio spectrum, not the visible light spectrum. According to the Event Horizons Telescope website, each of the eight radio telescopes produced about 350 terabytes of data per day. This radio spectrum observation data was timestamped using an extremely accurate atomic clock at each location.



The data was then shipped to supercomputing centers to be processed by an algorithm. The computer algorithms work by lining up the data from the different telescopes using the accurate timestamps and by aligning the observed data spatially. This process is called very-long-baseline interferometry (VLBI). The basic idea is that if you take two distinct observations of the same object from different locations and synchronize them. This helps to eliminate atmospheric noise by seeing what both different images have in common. While it may seem like a highly artificial process, it is very effective at eliminating noise.



The image you see is therefore the result of a computer algorithm processing radio observations of the black hole from 8 different locations on earth. The choice of color was likely a choice made by the computer scientists who wrote the algorithm, but it appears to bear some relation to the intensity of the radio energies observed: more energy shows as brighter, while darker spots with less energy are deeper red or black. This choice of color might make sense because the strong gravity of a black hole will tend to redshift any light emanating from nearby or passing close to the black hole. On the other hand, black holes are said to be enormously energetic in a broad spectrum of electromagnetic energy. First-hand accounts of nuclear explosions, which unleash X Rays and Gamma Rays and other far-ultraviolet energy have been described as having all kinds of exotic color.



While this may seem a bit disappointing, it's worth noting that visible light does not propagate through space as well as radio. Radio penetrates dust and gas and all the intervening detritus in space much better. Visible light tends to be blocked and re-absorbed. Think of Wifi signals (radio) versus visible light. The Wifi penetrates walls, while the visible light gets blocked by walls, curtains, etc. The EHT website has some helpful infographics on VLBI.






share|improve this answer











$endgroup$












  • $begingroup$
    So, if I understood correctly, we can see a black disk because the matter in front was not "visible" in the wavelength used by the radio telescopes. If so, why?
    $endgroup$
    – Cristian M
    9 hours ago










  • $begingroup$
    The ring-like appearance of the image is so exciting because it matches theoretical predictions so closely. These theoretical predictions are complex, but say that the visible appearance of the black hole is about 2.5 times the size of the black hole's event horizon. I won't pretend to know all the specifics, but suspect the black hole's gravity traps a lot of light, and at the sides we see more because we're looking at a deeper/thicker cross section of the black hole's surrounding mass. Kinda similar idea to the sun look red at sunrise/sunset because it's traveling through more atmosphere.
    $endgroup$
    – S. Imp
    9 hours ago










  • $begingroup$
    Also keep in mind that the image has a certain dynamic range. If you've ever adjusted brightness/contrast on an image you might get what I mean. Or like when you take a picture with your phone. The phone adjusts the exposure to the subject of the photo. If your subject is bright, it adjusts to let less light in. If your subject is dark, it adjusts to let more light in. My guess is that the computer algorithm was configured to adapt its dynamic range to the immediate vicinity of the black hole, making the background black and the brightest spot white, so that other colors fall in between.
    $endgroup$
    – S. Imp
    9 hours ago










  • $begingroup$
    Actually, that sunset/sunrise example is probably not helpful. Think instead of how in pictures from the Int'l Space Station, you can only see the cloudy atmosphere when you look at the edge of the earth. If you look straight down, you're looking thru just a thin layer of atmosphere. If you look toward the edge of earth, you're looking through more atmosphere along the edge of the earth.
    $endgroup$
    – S. Imp
    9 hours ago










  • $begingroup$
    There is no answer here to the question asked.
    $endgroup$
    – Rob Jeffries
    5 hours ago



















2












$begingroup$

What's going on here is that you have been misled into thinking the ring-like structure has anything to do with the accretion disk. It doesn't, or at least only indirectly.



The disk is referred to as geometrically thick, but optically thin (see sections 1 and 2 of paper V issued by the Event Horizon Telescope collaboration on 10 April 2019). This is actually the opposite of the disk visualised in the film "Interstellar".



Because the disk is geometrically thick, it covers the whole picture. Because it is optically thin, we can see through it to the black hole. That is the basic answer to your question.



In an optically thin plasma, the brightness you will see is proportional to the optical path length (physical length multiplied by an absorption coefficient) along that sightline. The photon ring marks radiation travelling towards us that has been bent around the black hole, or has even orbited it several times. Hence those sight lines have larger optical path lengths and that is why we see it as a bright ring.



Radiation travelling towards us from plasma in front of the black hole, has a small optical path length and is not very bright. In addition, the sight lines to plasma behind the black hole cannot travel through the black hole or even close to the event horizon. Hence the circular "shadow" inside the photon ring.






share|improve this answer











$endgroup$




















    1












    $begingroup$

    The black part in the centre of the image genuinely represents some directions from which less energy is arriving at the telescopes. I believe the intensity in the middle of it is about 10 times lower than the intensity in the bright ring around it. So in that sense it really is a dark spot.



    It is described in the papers as the "shadow" of the black hole, although even that is stretching the word shadow a little. Basically the light that "would have" been coming to us from that direction has been bent away by gravity.






    share|improve this answer









    $endgroup$












    • $begingroup$
      The question was why don't we see the accretion flow in front of the black hole?
      $endgroup$
      – Rob Jeffries
      5 hours ago












    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "514"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Cristian M is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f30370%2fwhy-isnt-the-black-hole-white%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The black hole image that you saw is not a photograph in the traditional sense. A traditional photograph is created when visible light strikes a digital sensor or film in a camera.



    The image of M87 that you saw was created by an elaborate, complex, globe-spanning and labor-intensive operation.



    To start with, the telescopes used were radio telescopes. These radio telescopes "see" radio waves with a 1.3mm wavelength like we see visible light, which has a wavelength from violet (380 nanometers) to red (700 nanometers). Think of it like infrared vision or night vision.



    Eight radio telescopes all over the globe were pointed toward the same black hole at the same time over the course of four days. Each radio telescope collected an enormous amount of data by observing the black hole in the radio spectrum, not the visible light spectrum. According to the Event Horizons Telescope website, each of the eight radio telescopes produced about 350 terabytes of data per day. This radio spectrum observation data was timestamped using an extremely accurate atomic clock at each location.



    The data was then shipped to supercomputing centers to be processed by an algorithm. The computer algorithms work by lining up the data from the different telescopes using the accurate timestamps and by aligning the observed data spatially. This process is called very-long-baseline interferometry (VLBI). The basic idea is that if you take two distinct observations of the same object from different locations and synchronize them. This helps to eliminate atmospheric noise by seeing what both different images have in common. While it may seem like a highly artificial process, it is very effective at eliminating noise.



    The image you see is therefore the result of a computer algorithm processing radio observations of the black hole from 8 different locations on earth. The choice of color was likely a choice made by the computer scientists who wrote the algorithm, but it appears to bear some relation to the intensity of the radio energies observed: more energy shows as brighter, while darker spots with less energy are deeper red or black. This choice of color might make sense because the strong gravity of a black hole will tend to redshift any light emanating from nearby or passing close to the black hole. On the other hand, black holes are said to be enormously energetic in a broad spectrum of electromagnetic energy. First-hand accounts of nuclear explosions, which unleash X Rays and Gamma Rays and other far-ultraviolet energy have been described as having all kinds of exotic color.



    While this may seem a bit disappointing, it's worth noting that visible light does not propagate through space as well as radio. Radio penetrates dust and gas and all the intervening detritus in space much better. Visible light tends to be blocked and re-absorbed. Think of Wifi signals (radio) versus visible light. The Wifi penetrates walls, while the visible light gets blocked by walls, curtains, etc. The EHT website has some helpful infographics on VLBI.






    share|improve this answer











    $endgroup$












    • $begingroup$
      So, if I understood correctly, we can see a black disk because the matter in front was not "visible" in the wavelength used by the radio telescopes. If so, why?
      $endgroup$
      – Cristian M
      9 hours ago










    • $begingroup$
      The ring-like appearance of the image is so exciting because it matches theoretical predictions so closely. These theoretical predictions are complex, but say that the visible appearance of the black hole is about 2.5 times the size of the black hole's event horizon. I won't pretend to know all the specifics, but suspect the black hole's gravity traps a lot of light, and at the sides we see more because we're looking at a deeper/thicker cross section of the black hole's surrounding mass. Kinda similar idea to the sun look red at sunrise/sunset because it's traveling through more atmosphere.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Also keep in mind that the image has a certain dynamic range. If you've ever adjusted brightness/contrast on an image you might get what I mean. Or like when you take a picture with your phone. The phone adjusts the exposure to the subject of the photo. If your subject is bright, it adjusts to let less light in. If your subject is dark, it adjusts to let more light in. My guess is that the computer algorithm was configured to adapt its dynamic range to the immediate vicinity of the black hole, making the background black and the brightest spot white, so that other colors fall in between.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Actually, that sunset/sunrise example is probably not helpful. Think instead of how in pictures from the Int'l Space Station, you can only see the cloudy atmosphere when you look at the edge of the earth. If you look straight down, you're looking thru just a thin layer of atmosphere. If you look toward the edge of earth, you're looking through more atmosphere along the edge of the earth.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      There is no answer here to the question asked.
      $endgroup$
      – Rob Jeffries
      5 hours ago
















    2












    $begingroup$

    The black hole image that you saw is not a photograph in the traditional sense. A traditional photograph is created when visible light strikes a digital sensor or film in a camera.



    The image of M87 that you saw was created by an elaborate, complex, globe-spanning and labor-intensive operation.



    To start with, the telescopes used were radio telescopes. These radio telescopes "see" radio waves with a 1.3mm wavelength like we see visible light, which has a wavelength from violet (380 nanometers) to red (700 nanometers). Think of it like infrared vision or night vision.



    Eight radio telescopes all over the globe were pointed toward the same black hole at the same time over the course of four days. Each radio telescope collected an enormous amount of data by observing the black hole in the radio spectrum, not the visible light spectrum. According to the Event Horizons Telescope website, each of the eight radio telescopes produced about 350 terabytes of data per day. This radio spectrum observation data was timestamped using an extremely accurate atomic clock at each location.



    The data was then shipped to supercomputing centers to be processed by an algorithm. The computer algorithms work by lining up the data from the different telescopes using the accurate timestamps and by aligning the observed data spatially. This process is called very-long-baseline interferometry (VLBI). The basic idea is that if you take two distinct observations of the same object from different locations and synchronize them. This helps to eliminate atmospheric noise by seeing what both different images have in common. While it may seem like a highly artificial process, it is very effective at eliminating noise.



    The image you see is therefore the result of a computer algorithm processing radio observations of the black hole from 8 different locations on earth. The choice of color was likely a choice made by the computer scientists who wrote the algorithm, but it appears to bear some relation to the intensity of the radio energies observed: more energy shows as brighter, while darker spots with less energy are deeper red or black. This choice of color might make sense because the strong gravity of a black hole will tend to redshift any light emanating from nearby or passing close to the black hole. On the other hand, black holes are said to be enormously energetic in a broad spectrum of electromagnetic energy. First-hand accounts of nuclear explosions, which unleash X Rays and Gamma Rays and other far-ultraviolet energy have been described as having all kinds of exotic color.



    While this may seem a bit disappointing, it's worth noting that visible light does not propagate through space as well as radio. Radio penetrates dust and gas and all the intervening detritus in space much better. Visible light tends to be blocked and re-absorbed. Think of Wifi signals (radio) versus visible light. The Wifi penetrates walls, while the visible light gets blocked by walls, curtains, etc. The EHT website has some helpful infographics on VLBI.






    share|improve this answer











    $endgroup$












    • $begingroup$
      So, if I understood correctly, we can see a black disk because the matter in front was not "visible" in the wavelength used by the radio telescopes. If so, why?
      $endgroup$
      – Cristian M
      9 hours ago










    • $begingroup$
      The ring-like appearance of the image is so exciting because it matches theoretical predictions so closely. These theoretical predictions are complex, but say that the visible appearance of the black hole is about 2.5 times the size of the black hole's event horizon. I won't pretend to know all the specifics, but suspect the black hole's gravity traps a lot of light, and at the sides we see more because we're looking at a deeper/thicker cross section of the black hole's surrounding mass. Kinda similar idea to the sun look red at sunrise/sunset because it's traveling through more atmosphere.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Also keep in mind that the image has a certain dynamic range. If you've ever adjusted brightness/contrast on an image you might get what I mean. Or like when you take a picture with your phone. The phone adjusts the exposure to the subject of the photo. If your subject is bright, it adjusts to let less light in. If your subject is dark, it adjusts to let more light in. My guess is that the computer algorithm was configured to adapt its dynamic range to the immediate vicinity of the black hole, making the background black and the brightest spot white, so that other colors fall in between.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Actually, that sunset/sunrise example is probably not helpful. Think instead of how in pictures from the Int'l Space Station, you can only see the cloudy atmosphere when you look at the edge of the earth. If you look straight down, you're looking thru just a thin layer of atmosphere. If you look toward the edge of earth, you're looking through more atmosphere along the edge of the earth.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      There is no answer here to the question asked.
      $endgroup$
      – Rob Jeffries
      5 hours ago














    2












    2








    2





    $begingroup$

    The black hole image that you saw is not a photograph in the traditional sense. A traditional photograph is created when visible light strikes a digital sensor or film in a camera.



    The image of M87 that you saw was created by an elaborate, complex, globe-spanning and labor-intensive operation.



    To start with, the telescopes used were radio telescopes. These radio telescopes "see" radio waves with a 1.3mm wavelength like we see visible light, which has a wavelength from violet (380 nanometers) to red (700 nanometers). Think of it like infrared vision or night vision.



    Eight radio telescopes all over the globe were pointed toward the same black hole at the same time over the course of four days. Each radio telescope collected an enormous amount of data by observing the black hole in the radio spectrum, not the visible light spectrum. According to the Event Horizons Telescope website, each of the eight radio telescopes produced about 350 terabytes of data per day. This radio spectrum observation data was timestamped using an extremely accurate atomic clock at each location.



    The data was then shipped to supercomputing centers to be processed by an algorithm. The computer algorithms work by lining up the data from the different telescopes using the accurate timestamps and by aligning the observed data spatially. This process is called very-long-baseline interferometry (VLBI). The basic idea is that if you take two distinct observations of the same object from different locations and synchronize them. This helps to eliminate atmospheric noise by seeing what both different images have in common. While it may seem like a highly artificial process, it is very effective at eliminating noise.



    The image you see is therefore the result of a computer algorithm processing radio observations of the black hole from 8 different locations on earth. The choice of color was likely a choice made by the computer scientists who wrote the algorithm, but it appears to bear some relation to the intensity of the radio energies observed: more energy shows as brighter, while darker spots with less energy are deeper red or black. This choice of color might make sense because the strong gravity of a black hole will tend to redshift any light emanating from nearby or passing close to the black hole. On the other hand, black holes are said to be enormously energetic in a broad spectrum of electromagnetic energy. First-hand accounts of nuclear explosions, which unleash X Rays and Gamma Rays and other far-ultraviolet energy have been described as having all kinds of exotic color.



    While this may seem a bit disappointing, it's worth noting that visible light does not propagate through space as well as radio. Radio penetrates dust and gas and all the intervening detritus in space much better. Visible light tends to be blocked and re-absorbed. Think of Wifi signals (radio) versus visible light. The Wifi penetrates walls, while the visible light gets blocked by walls, curtains, etc. The EHT website has some helpful infographics on VLBI.






    share|improve this answer











    $endgroup$



    The black hole image that you saw is not a photograph in the traditional sense. A traditional photograph is created when visible light strikes a digital sensor or film in a camera.



    The image of M87 that you saw was created by an elaborate, complex, globe-spanning and labor-intensive operation.



    To start with, the telescopes used were radio telescopes. These radio telescopes "see" radio waves with a 1.3mm wavelength like we see visible light, which has a wavelength from violet (380 nanometers) to red (700 nanometers). Think of it like infrared vision or night vision.



    Eight radio telescopes all over the globe were pointed toward the same black hole at the same time over the course of four days. Each radio telescope collected an enormous amount of data by observing the black hole in the radio spectrum, not the visible light spectrum. According to the Event Horizons Telescope website, each of the eight radio telescopes produced about 350 terabytes of data per day. This radio spectrum observation data was timestamped using an extremely accurate atomic clock at each location.



    The data was then shipped to supercomputing centers to be processed by an algorithm. The computer algorithms work by lining up the data from the different telescopes using the accurate timestamps and by aligning the observed data spatially. This process is called very-long-baseline interferometry (VLBI). The basic idea is that if you take two distinct observations of the same object from different locations and synchronize them. This helps to eliminate atmospheric noise by seeing what both different images have in common. While it may seem like a highly artificial process, it is very effective at eliminating noise.



    The image you see is therefore the result of a computer algorithm processing radio observations of the black hole from 8 different locations on earth. The choice of color was likely a choice made by the computer scientists who wrote the algorithm, but it appears to bear some relation to the intensity of the radio energies observed: more energy shows as brighter, while darker spots with less energy are deeper red or black. This choice of color might make sense because the strong gravity of a black hole will tend to redshift any light emanating from nearby or passing close to the black hole. On the other hand, black holes are said to be enormously energetic in a broad spectrum of electromagnetic energy. First-hand accounts of nuclear explosions, which unleash X Rays and Gamma Rays and other far-ultraviolet energy have been described as having all kinds of exotic color.



    While this may seem a bit disappointing, it's worth noting that visible light does not propagate through space as well as radio. Radio penetrates dust and gas and all the intervening detritus in space much better. Visible light tends to be blocked and re-absorbed. Think of Wifi signals (radio) versus visible light. The Wifi penetrates walls, while the visible light gets blocked by walls, curtains, etc. The EHT website has some helpful infographics on VLBI.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 10 hours ago

























    answered 10 hours ago









    S. ImpS. Imp

    20618




    20618











    • $begingroup$
      So, if I understood correctly, we can see a black disk because the matter in front was not "visible" in the wavelength used by the radio telescopes. If so, why?
      $endgroup$
      – Cristian M
      9 hours ago










    • $begingroup$
      The ring-like appearance of the image is so exciting because it matches theoretical predictions so closely. These theoretical predictions are complex, but say that the visible appearance of the black hole is about 2.5 times the size of the black hole's event horizon. I won't pretend to know all the specifics, but suspect the black hole's gravity traps a lot of light, and at the sides we see more because we're looking at a deeper/thicker cross section of the black hole's surrounding mass. Kinda similar idea to the sun look red at sunrise/sunset because it's traveling through more atmosphere.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Also keep in mind that the image has a certain dynamic range. If you've ever adjusted brightness/contrast on an image you might get what I mean. Or like when you take a picture with your phone. The phone adjusts the exposure to the subject of the photo. If your subject is bright, it adjusts to let less light in. If your subject is dark, it adjusts to let more light in. My guess is that the computer algorithm was configured to adapt its dynamic range to the immediate vicinity of the black hole, making the background black and the brightest spot white, so that other colors fall in between.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Actually, that sunset/sunrise example is probably not helpful. Think instead of how in pictures from the Int'l Space Station, you can only see the cloudy atmosphere when you look at the edge of the earth. If you look straight down, you're looking thru just a thin layer of atmosphere. If you look toward the edge of earth, you're looking through more atmosphere along the edge of the earth.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      There is no answer here to the question asked.
      $endgroup$
      – Rob Jeffries
      5 hours ago

















    • $begingroup$
      So, if I understood correctly, we can see a black disk because the matter in front was not "visible" in the wavelength used by the radio telescopes. If so, why?
      $endgroup$
      – Cristian M
      9 hours ago










    • $begingroup$
      The ring-like appearance of the image is so exciting because it matches theoretical predictions so closely. These theoretical predictions are complex, but say that the visible appearance of the black hole is about 2.5 times the size of the black hole's event horizon. I won't pretend to know all the specifics, but suspect the black hole's gravity traps a lot of light, and at the sides we see more because we're looking at a deeper/thicker cross section of the black hole's surrounding mass. Kinda similar idea to the sun look red at sunrise/sunset because it's traveling through more atmosphere.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Also keep in mind that the image has a certain dynamic range. If you've ever adjusted brightness/contrast on an image you might get what I mean. Or like when you take a picture with your phone. The phone adjusts the exposure to the subject of the photo. If your subject is bright, it adjusts to let less light in. If your subject is dark, it adjusts to let more light in. My guess is that the computer algorithm was configured to adapt its dynamic range to the immediate vicinity of the black hole, making the background black and the brightest spot white, so that other colors fall in between.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      Actually, that sunset/sunrise example is probably not helpful. Think instead of how in pictures from the Int'l Space Station, you can only see the cloudy atmosphere when you look at the edge of the earth. If you look straight down, you're looking thru just a thin layer of atmosphere. If you look toward the edge of earth, you're looking through more atmosphere along the edge of the earth.
      $endgroup$
      – S. Imp
      9 hours ago










    • $begingroup$
      There is no answer here to the question asked.
      $endgroup$
      – Rob Jeffries
      5 hours ago
















    $begingroup$
    So, if I understood correctly, we can see a black disk because the matter in front was not "visible" in the wavelength used by the radio telescopes. If so, why?
    $endgroup$
    – Cristian M
    9 hours ago




    $begingroup$
    So, if I understood correctly, we can see a black disk because the matter in front was not "visible" in the wavelength used by the radio telescopes. If so, why?
    $endgroup$
    – Cristian M
    9 hours ago












    $begingroup$
    The ring-like appearance of the image is so exciting because it matches theoretical predictions so closely. These theoretical predictions are complex, but say that the visible appearance of the black hole is about 2.5 times the size of the black hole's event horizon. I won't pretend to know all the specifics, but suspect the black hole's gravity traps a lot of light, and at the sides we see more because we're looking at a deeper/thicker cross section of the black hole's surrounding mass. Kinda similar idea to the sun look red at sunrise/sunset because it's traveling through more atmosphere.
    $endgroup$
    – S. Imp
    9 hours ago




    $begingroup$
    The ring-like appearance of the image is so exciting because it matches theoretical predictions so closely. These theoretical predictions are complex, but say that the visible appearance of the black hole is about 2.5 times the size of the black hole's event horizon. I won't pretend to know all the specifics, but suspect the black hole's gravity traps a lot of light, and at the sides we see more because we're looking at a deeper/thicker cross section of the black hole's surrounding mass. Kinda similar idea to the sun look red at sunrise/sunset because it's traveling through more atmosphere.
    $endgroup$
    – S. Imp
    9 hours ago












    $begingroup$
    Also keep in mind that the image has a certain dynamic range. If you've ever adjusted brightness/contrast on an image you might get what I mean. Or like when you take a picture with your phone. The phone adjusts the exposure to the subject of the photo. If your subject is bright, it adjusts to let less light in. If your subject is dark, it adjusts to let more light in. My guess is that the computer algorithm was configured to adapt its dynamic range to the immediate vicinity of the black hole, making the background black and the brightest spot white, so that other colors fall in between.
    $endgroup$
    – S. Imp
    9 hours ago




    $begingroup$
    Also keep in mind that the image has a certain dynamic range. If you've ever adjusted brightness/contrast on an image you might get what I mean. Or like when you take a picture with your phone. The phone adjusts the exposure to the subject of the photo. If your subject is bright, it adjusts to let less light in. If your subject is dark, it adjusts to let more light in. My guess is that the computer algorithm was configured to adapt its dynamic range to the immediate vicinity of the black hole, making the background black and the brightest spot white, so that other colors fall in between.
    $endgroup$
    – S. Imp
    9 hours ago












    $begingroup$
    Actually, that sunset/sunrise example is probably not helpful. Think instead of how in pictures from the Int'l Space Station, you can only see the cloudy atmosphere when you look at the edge of the earth. If you look straight down, you're looking thru just a thin layer of atmosphere. If you look toward the edge of earth, you're looking through more atmosphere along the edge of the earth.
    $endgroup$
    – S. Imp
    9 hours ago




    $begingroup$
    Actually, that sunset/sunrise example is probably not helpful. Think instead of how in pictures from the Int'l Space Station, you can only see the cloudy atmosphere when you look at the edge of the earth. If you look straight down, you're looking thru just a thin layer of atmosphere. If you look toward the edge of earth, you're looking through more atmosphere along the edge of the earth.
    $endgroup$
    – S. Imp
    9 hours ago












    $begingroup$
    There is no answer here to the question asked.
    $endgroup$
    – Rob Jeffries
    5 hours ago





    $begingroup$
    There is no answer here to the question asked.
    $endgroup$
    – Rob Jeffries
    5 hours ago












    2












    $begingroup$

    What's going on here is that you have been misled into thinking the ring-like structure has anything to do with the accretion disk. It doesn't, or at least only indirectly.



    The disk is referred to as geometrically thick, but optically thin (see sections 1 and 2 of paper V issued by the Event Horizon Telescope collaboration on 10 April 2019). This is actually the opposite of the disk visualised in the film "Interstellar".



    Because the disk is geometrically thick, it covers the whole picture. Because it is optically thin, we can see through it to the black hole. That is the basic answer to your question.



    In an optically thin plasma, the brightness you will see is proportional to the optical path length (physical length multiplied by an absorption coefficient) along that sightline. The photon ring marks radiation travelling towards us that has been bent around the black hole, or has even orbited it several times. Hence those sight lines have larger optical path lengths and that is why we see it as a bright ring.



    Radiation travelling towards us from plasma in front of the black hole, has a small optical path length and is not very bright. In addition, the sight lines to plasma behind the black hole cannot travel through the black hole or even close to the event horizon. Hence the circular "shadow" inside the photon ring.






    share|improve this answer











    $endgroup$

















      2












      $begingroup$

      What's going on here is that you have been misled into thinking the ring-like structure has anything to do with the accretion disk. It doesn't, or at least only indirectly.



      The disk is referred to as geometrically thick, but optically thin (see sections 1 and 2 of paper V issued by the Event Horizon Telescope collaboration on 10 April 2019). This is actually the opposite of the disk visualised in the film "Interstellar".



      Because the disk is geometrically thick, it covers the whole picture. Because it is optically thin, we can see through it to the black hole. That is the basic answer to your question.



      In an optically thin plasma, the brightness you will see is proportional to the optical path length (physical length multiplied by an absorption coefficient) along that sightline. The photon ring marks radiation travelling towards us that has been bent around the black hole, or has even orbited it several times. Hence those sight lines have larger optical path lengths and that is why we see it as a bright ring.



      Radiation travelling towards us from plasma in front of the black hole, has a small optical path length and is not very bright. In addition, the sight lines to plasma behind the black hole cannot travel through the black hole or even close to the event horizon. Hence the circular "shadow" inside the photon ring.






      share|improve this answer











      $endgroup$















        2












        2








        2





        $begingroup$

        What's going on here is that you have been misled into thinking the ring-like structure has anything to do with the accretion disk. It doesn't, or at least only indirectly.



        The disk is referred to as geometrically thick, but optically thin (see sections 1 and 2 of paper V issued by the Event Horizon Telescope collaboration on 10 April 2019). This is actually the opposite of the disk visualised in the film "Interstellar".



        Because the disk is geometrically thick, it covers the whole picture. Because it is optically thin, we can see through it to the black hole. That is the basic answer to your question.



        In an optically thin plasma, the brightness you will see is proportional to the optical path length (physical length multiplied by an absorption coefficient) along that sightline. The photon ring marks radiation travelling towards us that has been bent around the black hole, or has even orbited it several times. Hence those sight lines have larger optical path lengths and that is why we see it as a bright ring.



        Radiation travelling towards us from plasma in front of the black hole, has a small optical path length and is not very bright. In addition, the sight lines to plasma behind the black hole cannot travel through the black hole or even close to the event horizon. Hence the circular "shadow" inside the photon ring.






        share|improve this answer











        $endgroup$



        What's going on here is that you have been misled into thinking the ring-like structure has anything to do with the accretion disk. It doesn't, or at least only indirectly.



        The disk is referred to as geometrically thick, but optically thin (see sections 1 and 2 of paper V issued by the Event Horizon Telescope collaboration on 10 April 2019). This is actually the opposite of the disk visualised in the film "Interstellar".



        Because the disk is geometrically thick, it covers the whole picture. Because it is optically thin, we can see through it to the black hole. That is the basic answer to your question.



        In an optically thin plasma, the brightness you will see is proportional to the optical path length (physical length multiplied by an absorption coefficient) along that sightline. The photon ring marks radiation travelling towards us that has been bent around the black hole, or has even orbited it several times. Hence those sight lines have larger optical path lengths and that is why we see it as a bright ring.



        Radiation travelling towards us from plasma in front of the black hole, has a small optical path length and is not very bright. In addition, the sight lines to plasma behind the black hole cannot travel through the black hole or even close to the event horizon. Hence the circular "shadow" inside the photon ring.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 4 hours ago

























        answered 4 hours ago









        Rob JeffriesRob Jeffries

        54.4k4112175




        54.4k4112175





















            1












            $begingroup$

            The black part in the centre of the image genuinely represents some directions from which less energy is arriving at the telescopes. I believe the intensity in the middle of it is about 10 times lower than the intensity in the bright ring around it. So in that sense it really is a dark spot.



            It is described in the papers as the "shadow" of the black hole, although even that is stretching the word shadow a little. Basically the light that "would have" been coming to us from that direction has been bent away by gravity.






            share|improve this answer









            $endgroup$












            • $begingroup$
              The question was why don't we see the accretion flow in front of the black hole?
              $endgroup$
              – Rob Jeffries
              5 hours ago
















            1












            $begingroup$

            The black part in the centre of the image genuinely represents some directions from which less energy is arriving at the telescopes. I believe the intensity in the middle of it is about 10 times lower than the intensity in the bright ring around it. So in that sense it really is a dark spot.



            It is described in the papers as the "shadow" of the black hole, although even that is stretching the word shadow a little. Basically the light that "would have" been coming to us from that direction has been bent away by gravity.






            share|improve this answer









            $endgroup$












            • $begingroup$
              The question was why don't we see the accretion flow in front of the black hole?
              $endgroup$
              – Rob Jeffries
              5 hours ago














            1












            1








            1





            $begingroup$

            The black part in the centre of the image genuinely represents some directions from which less energy is arriving at the telescopes. I believe the intensity in the middle of it is about 10 times lower than the intensity in the bright ring around it. So in that sense it really is a dark spot.



            It is described in the papers as the "shadow" of the black hole, although even that is stretching the word shadow a little. Basically the light that "would have" been coming to us from that direction has been bent away by gravity.






            share|improve this answer









            $endgroup$



            The black part in the centre of the image genuinely represents some directions from which less energy is arriving at the telescopes. I believe the intensity in the middle of it is about 10 times lower than the intensity in the bright ring around it. So in that sense it really is a dark spot.



            It is described in the papers as the "shadow" of the black hole, although even that is stretching the word shadow a little. Basically the light that "would have" been coming to us from that direction has been bent away by gravity.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 7 hours ago









            Steve LintonSteve Linton

            2,5331319




            2,5331319











            • $begingroup$
              The question was why don't we see the accretion flow in front of the black hole?
              $endgroup$
              – Rob Jeffries
              5 hours ago

















            • $begingroup$
              The question was why don't we see the accretion flow in front of the black hole?
              $endgroup$
              – Rob Jeffries
              5 hours ago
















            $begingroup$
            The question was why don't we see the accretion flow in front of the black hole?
            $endgroup$
            – Rob Jeffries
            5 hours ago





            $begingroup$
            The question was why don't we see the accretion flow in front of the black hole?
            $endgroup$
            – Rob Jeffries
            5 hours ago











            Cristian M is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Cristian M is a new contributor. Be nice, and check out our Code of Conduct.












            Cristian M is a new contributor. Be nice, and check out our Code of Conduct.











            Cristian M is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Astronomy Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f30370%2fwhy-isnt-the-black-hole-white%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to make RAID controller rescan devices The 2019 Stack Overflow Developer Survey Results Are InLSI MegaRAID SAS 9261-8i: Disk isn't recognized after replacementHow to monitor the hard disk status behind Dell PERC H710 Raid Controller with CentOS 6?LSI MegaRAID - Recreate missing RAID 1 arrayext. 2-bay USB-Drive with RAID: btrfs RAID vs built-in RAIDInvalid SAS topologyDoes enabling JBOD mode on LSI based controllers affect existing logical disks/arrays?Why is there a shift between the WWN reported from the controller and the Linux system?Optimal RAID 6+0 Setup for 40+ 4TB DisksAccidental SAS cable removal

            Куамањотепек (Чилапа де Алварез) Садржај Становништво Види још Референце Спољашње везе Мени за навигацију17°19′47″N 99°1′51″W / 17.32972° СГШ; 99.03083° ЗГД / 17.32972; -99.0308317°19′47″N 99°1′51″W / 17.32972° СГШ; 99.03083° ЗГД / 17.32972; -99.030838877656„Instituto Nacional de Estadística y Geografía”„The GeoNames geographical database”Мексичка насељапроширитиуу

            Срби Садржај Географија Етимологија Генетика Историја Језик Религија Популација Познати Срби Види још Напомене Референце Извори Литература Спољашње везе Мени за навигацијууrs.one.un.orgАрхивираноАрхивирано из оригиналаПопис становништва из 2011. годинеCOMMUNITY PROFILE: SERB COMMUNITY„1996 population census in Bosnia and Herzegovina”„CIA - The World Factbook - Bosnia and Herzegovina”American FactFinder - Results„2011 National Household Survey: Data tables”„Srbi u Nemačkoj | Srbi u Njemačkoj | Zentralrat der Serben in Deutschland”оригинала„Vesti online - Srpski informativni portal”„The Serbian Diaspora and Youth: Cross-Border Ties and Opportunities for Development”оригиналаSerben-Demo eskaliert in Wien„The People of Australia – Statistics from the 2011 Census”„Erstmals über eine Million EU- und EFTA Angehörige in der Schweiz”STANOVNIŠTVO PREMA NARODNOSTI – DETALJNA KLASIFIKACIJA – POPIS 2011.(Завод за статистику Црне Горе)title=Présentation de la République de SerbieSerbian | EthnologuePopulation by ethnic affiliation, Slovenia, Census 1953, 1961, 1971, 1981, 1991 and 2002Попис на населението, домаќинствата и становите во Република Македонија, 2002: Дефинитивни податоциALBANIJA ETNIČKI ČISTI SRBE: Iščezlo 100.000 ljudi pokrštavanjem, kao što su to radile ustaše u NDH! | Telegraf – Najnovije vestiИз удаљене Аргентине„Tab11. Populaţia stabilă după etnie şi limba maternă, pe categorii de localităţi”Суседи броје Србе„Srpska Dijaspora”оригиналаMinifacts about Norway 2012„Statistiques - 01.06.2008”ПРЕДСЕДНИК СРБИЈЕ СА СРБИМА У БРАТИСЛАВИСлавка Драшковић: Многа питања Срба у Црној Гори нерешенаThe Spread of the SlavesGoogle Book„Distribution of European Y-chromosome DNA (Y-DNA) haplogroups by country in percentage”American Journal of Physical Anthropology 142:380–390 (2010)„Архивирана копија”оригинала„Haplogroup I2 (Y-DNA)”„Архивирана копија”оригиналаVTS 01 1 - YouTubeПрви сукоби Срба и Турака - Политикин забавникАрхивираноConstantine Porphyrogenitus: De Administrando ImperioВизантиски извори за историју народа ЈугославијеDe conversione Croatorum et Serborum: A Lost SourceDe conversione Croatorum et Serborum: Изгубљени извор Константина ПорфирогенитаИсторија српске државностиИсторија српског народаСрбофобија и њени извориСерска област после Душанове смртиИсторија ВизантијеИсторија средњовековне босанске државеСрби међу европским народимаСрби у средњем векуМедијиПодациууууу00577267