Families of ordered set partitions with disjoint blocks The 2019 Stack Overflow Developer Survey Results Are InDeligne-Simpson problem in the symmetric groupProcreation with several gendersI am searching for the name of a partition (if it already exists)Existence problem for a generalisation of Latin squares (matrices with fixed row and column sets)Simple lower bounds for Bell numbers (number of set partitions)?Can a partition free family in $2^[n]$ always be enlarged to one of size $2^n-1$?Looking for N-dimensional spheres in the configuration space of the colorful Tverberg problemBalanced partitions of vector setsCan we cover a set by a particular family of sets?genus zero permutation and noncrossing partition

Families of ordered set partitions with disjoint blocks



The 2019 Stack Overflow Developer Survey Results Are InDeligne-Simpson problem in the symmetric groupProcreation with several gendersI am searching for the name of a partition (if it already exists)Existence problem for a generalisation of Latin squares (matrices with fixed row and column sets)Simple lower bounds for Bell numbers (number of set partitions)?Can a partition free family in $2^[n]$ always be enlarged to one of size $2^n-1$?Looking for N-dimensional spheres in the configuration space of the colorful Tverberg problemBalanced partitions of vector setsCan we cover a set by a particular family of sets?genus zero permutation and noncrossing partition










2












$begingroup$


Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



Suppose this family also has the property that for each $j=1,dots, k$



$$B_1j cup cdots cup B_mj$$



is also a partition of $[n]$



Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



Edit:



It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



    Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



    Suppose this family also has the property that for each $j=1,dots, k$



    $$B_1j cup cdots cup B_mj$$



    is also a partition of $[n]$



    Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



    Edit:



    It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



      Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



      Suppose this family also has the property that for each $j=1,dots, k$



      $$B_1j cup cdots cup B_mj$$



      is also a partition of $[n]$



      Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



      Edit:



      It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.










      share|cite|improve this question











      $endgroup$




      Let $C_1,dots, C_m$ be a family of ordered set partitions of $[n]$ with exactly $k$ blocks.



      Write $C_i = B_i1, dots, B_ik$ for $i=1,dots, m$ where $B_ij$ are the blocks of the ordered set partition $C_i$.



      Suppose this family also has the property that for each $j=1,dots, k$



      $$B_1j cup cdots cup B_mj$$



      is also a partition of $[n]$



      Can one determine the maximal number of members in such a family $m$, or at least a decent upper bound on $m$?



      Edit:



      It might also be worth noting that if we take $k=n$, then $m=n$ since this would be equivalent to the existence of a latin square. I am in particular interested in the case $k=2$.







      co.combinatorics partitions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 11 hours ago









      darij grinberg

      18.4k373188




      18.4k373188










      asked 14 hours ago









      user94267user94267

      1007




      1007




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
          thus $m=k$.






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            Answer: $m=k$.



            Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



            -- row-wise: any element of $[n]$ appears then $m$ times.



            -- column-wise: any element of $[n]$ appears then $k$ times.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
              $endgroup$
              – Teo Banica
              13 hours ago










            • $begingroup$
              you actually multiply 1 by $m$ and by $k$ :)
              $endgroup$
              – Fedor Petrov
              13 hours ago











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327585%2ffamilies-of-ordered-set-partitions-with-disjoint-blocks%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
            thus $m=k$.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
              thus $m=k$.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
                thus $m=k$.






                share|cite|improve this answer









                $endgroup$



                We have $$mn=sum_isum_j |B_ij|=sum_jsum_i |B_ij|=kn,$$
                thus $m=k$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 13 hours ago









                Fedor PetrovFedor Petrov

                52.1k6122239




                52.1k6122239





















                    3












                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      13 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      13 hours ago















                    3












                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      13 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      13 hours ago













                    3












                    3








                    3





                    $begingroup$

                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.






                    share|cite|improve this answer









                    $endgroup$



                    Answer: $m=k$.



                    Put indeed your blocks $B_ij$ in a $mtimes k$ array and then "read" this array:



                    -- row-wise: any element of $[n]$ appears then $m$ times.



                    -- column-wise: any element of $[n]$ appears then $k$ times.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 13 hours ago









                    Teo BanicaTeo Banica

                    568528




                    568528











                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      13 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      13 hours ago
















                    • $begingroup$
                      26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                      $endgroup$
                      – Teo Banica
                      13 hours ago










                    • $begingroup$
                      you actually multiply 1 by $m$ and by $k$ :)
                      $endgroup$
                      – Fedor Petrov
                      13 hours ago















                    $begingroup$
                    26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                    $endgroup$
                    – Teo Banica
                    13 hours ago




                    $begingroup$
                    26 seconds slower than Fedor, but my answer is better, does not use multiplication :)
                    $endgroup$
                    – Teo Banica
                    13 hours ago












                    $begingroup$
                    you actually multiply 1 by $m$ and by $k$ :)
                    $endgroup$
                    – Fedor Petrov
                    13 hours ago




                    $begingroup$
                    you actually multiply 1 by $m$ and by $k$ :)
                    $endgroup$
                    – Fedor Petrov
                    13 hours ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327585%2ffamilies-of-ordered-set-partitions-with-disjoint-blocks%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Куамањотепек (Чилапа де Алварез) Садржај Становништво Види још Референце Спољашње везе Мени за навигацију17°19′47″N 99°1′51″W / 17.32972° СГШ; 99.03083° ЗГД / 17.32972; -99.0308317°19′47″N 99°1′51″W / 17.32972° СГШ; 99.03083° ЗГД / 17.32972; -99.030838877656„Instituto Nacional de Estadística y Geografía”„The GeoNames geographical database”Мексичка насељапроширитиуу

                    How to make RAID controller rescan devices The 2019 Stack Overflow Developer Survey Results Are InLSI MegaRAID SAS 9261-8i: Disk isn't recognized after replacementHow to monitor the hard disk status behind Dell PERC H710 Raid Controller with CentOS 6?LSI MegaRAID - Recreate missing RAID 1 arrayext. 2-bay USB-Drive with RAID: btrfs RAID vs built-in RAIDInvalid SAS topologyDoes enabling JBOD mode on LSI based controllers affect existing logical disks/arrays?Why is there a shift between the WWN reported from the controller and the Linux system?Optimal RAID 6+0 Setup for 40+ 4TB DisksAccidental SAS cable removal

                    Срби Садржај Географија Етимологија Генетика Историја Језик Религија Популација Познати Срби Види још Напомене Референце Извори Литература Спољашње везе Мени за навигацијууrs.one.un.orgАрхивираноАрхивирано из оригиналаПопис становништва из 2011. годинеCOMMUNITY PROFILE: SERB COMMUNITY„1996 population census in Bosnia and Herzegovina”„CIA - The World Factbook - Bosnia and Herzegovina”American FactFinder - Results„2011 National Household Survey: Data tables”„Srbi u Nemačkoj | Srbi u Njemačkoj | Zentralrat der Serben in Deutschland”оригинала„Vesti online - Srpski informativni portal”„The Serbian Diaspora and Youth: Cross-Border Ties and Opportunities for Development”оригиналаSerben-Demo eskaliert in Wien„The People of Australia – Statistics from the 2011 Census”„Erstmals über eine Million EU- und EFTA Angehörige in der Schweiz”STANOVNIŠTVO PREMA NARODNOSTI – DETALJNA KLASIFIKACIJA – POPIS 2011.(Завод за статистику Црне Горе)title=Présentation de la République de SerbieSerbian | EthnologuePopulation by ethnic affiliation, Slovenia, Census 1953, 1961, 1971, 1981, 1991 and 2002Попис на населението, домаќинствата и становите во Република Македонија, 2002: Дефинитивни податоциALBANIJA ETNIČKI ČISTI SRBE: Iščezlo 100.000 ljudi pokrštavanjem, kao što su to radile ustaše u NDH! | Telegraf – Najnovije vestiИз удаљене Аргентине„Tab11. Populaţia stabilă după etnie şi limba maternă, pe categorii de localităţi”Суседи броје Србе„Srpska Dijaspora”оригиналаMinifacts about Norway 2012„Statistiques - 01.06.2008”ПРЕДСЕДНИК СРБИЈЕ СА СРБИМА У БРАТИСЛАВИСлавка Драшковић: Многа питања Срба у Црној Гори нерешенаThe Spread of the SlavesGoogle Book„Distribution of European Y-chromosome DNA (Y-DNA) haplogroups by country in percentage”American Journal of Physical Anthropology 142:380–390 (2010)„Архивирана копија”оригинала„Haplogroup I2 (Y-DNA)”„Архивирана копија”оригиналаVTS 01 1 - YouTubeПрви сукоби Срба и Турака - Политикин забавникАрхивираноConstantine Porphyrogenitus: De Administrando ImperioВизантиски извори за историју народа ЈугославијеDe conversione Croatorum et Serborum: A Lost SourceDe conversione Croatorum et Serborum: Изгубљени извор Константина ПорфирогенитаИсторија српске државностиИсторија српског народаСрбофобија и њени извориСерска област после Душанове смртиИсторија ВизантијеИсторија средњовековне босанске државеСрби међу европским народимаСрби у средњем векуМедијиПодациууууу00577267