Can we generate random numbers using irrational numbers like π and e? The 2019 Stack Overflow Developer Survey Results Are InPerfect random number generation using normal numbersIs rejection sampling the only way to get a truly uniform distribution of random numbers?Is there a software algorithm that can generate a non-deterministic chaos pattern?Can a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?Recurrence relations that do not have a closed form solutionHow to detect repeating random numbers?Generate a Random Diagonally Dominant MatrixCan a relatively small subset of random numbers be permuted and reused and still guarantee good expected running time for an algorithm like quicksort?Perfect random number generation using normal numbersCreating Random Number Generator with rangeHow to generate evenly distributed random numbers from the tics of a Geiger Counter?

Apparent duplicates between Haynes service instructions and MOT

Falsification in Math vs Science

Is this app Icon Browser Safe/Legit?

Feature engineering suggestion required

Does the shape of a die affect the probability of a number being rolled?

What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?

Why was M87 targetted for the Event Horizon Telescope instead of Sagittarius A*?

Should I use my personal e-mail address, or my workplace one, when registering to external websites for work purposes?

Did 3000BC Egyptians use meteoric iron weapons?

Why do UK politicians seemingly ignore opinion polls on Brexit?

Identify boardgame from Big movie

Are spiders unable to hurt humans, especially very small spiders?

Can you compress metal and what would be the consequences?

Is bread bad for ducks?

How to manage monthly salary

When should I buy a clipper card after flying to OAK?

Can one be advised by a professor who is very far away?

Why not take a picture of a closer black hole?

Does a dangling wire really electrocute me if I'm standing in water?

What do the Banks children have against barley water?

Is three citations per paragraph excessive for undergraduate research paper?

How to type this arrow in math mode?

Why can Shazam fly?

What is the meaning of Triage in Cybersec world?



Can we generate random numbers using irrational numbers like π and e?



The 2019 Stack Overflow Developer Survey Results Are InPerfect random number generation using normal numbersIs rejection sampling the only way to get a truly uniform distribution of random numbers?Is there a software algorithm that can generate a non-deterministic chaos pattern?Can a transcendental number like $e$ or $pi$ be compressed as not algorithmically random?Recurrence relations that do not have a closed form solutionHow to detect repeating random numbers?Generate a Random Diagonally Dominant MatrixCan a relatively small subset of random numbers be permuted and reused and still guarantee good expected running time for an algorithm like quicksort?Perfect random number generation using normal numbersCreating Random Number Generator with rangeHow to generate evenly distributed random numbers from the tics of a Geiger Counter?










6












$begingroup$


Irrational numbers like $pi$, $e$ and $sqrt2$ have a unique and non-repeating sequence after the decimal point. If we extract the $n$-th digit from such numbers (where $n$ is the number of times the method is called) and make a number with the digits as it is, should we not get a perfect random number generator? For example, if we're using $sqrt2$, $e$ and $pi$, the first number is 123, second one is 471, the next one is 184 and so on.










share|cite|improve this question









New contributor




Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Related: mathoverflow.net/questions/26942/…
    $endgroup$
    – BurnsBA
    10 hours ago






  • 9




    $begingroup$
    You have a strange definition of "random" in your head. "Random" means "unpredictable". How is your sequence unpredictable? What definition of "random" do you have in mind? Perhaps what you are calling "random" has another name.
    $endgroup$
    – Eric Lippert
    10 hours ago











  • $begingroup$
    Essentially the same question was asked here: cs.stackexchange.com/q/65078/755. (Community votes requested -- should these be merged? Should one be closed as a dup of the other?)
    $endgroup$
    – D.W.
    9 hours ago











  • $begingroup$
    Note the spigot algorithm can be used to generate any hex digit in pi, without having to generate prior digits.
    $endgroup$
    – rcgldr
    3 hours ago















6












$begingroup$


Irrational numbers like $pi$, $e$ and $sqrt2$ have a unique and non-repeating sequence after the decimal point. If we extract the $n$-th digit from such numbers (where $n$ is the number of times the method is called) and make a number with the digits as it is, should we not get a perfect random number generator? For example, if we're using $sqrt2$, $e$ and $pi$, the first number is 123, second one is 471, the next one is 184 and so on.










share|cite|improve this question









New contributor




Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Related: mathoverflow.net/questions/26942/…
    $endgroup$
    – BurnsBA
    10 hours ago






  • 9




    $begingroup$
    You have a strange definition of "random" in your head. "Random" means "unpredictable". How is your sequence unpredictable? What definition of "random" do you have in mind? Perhaps what you are calling "random" has another name.
    $endgroup$
    – Eric Lippert
    10 hours ago











  • $begingroup$
    Essentially the same question was asked here: cs.stackexchange.com/q/65078/755. (Community votes requested -- should these be merged? Should one be closed as a dup of the other?)
    $endgroup$
    – D.W.
    9 hours ago











  • $begingroup$
    Note the spigot algorithm can be used to generate any hex digit in pi, without having to generate prior digits.
    $endgroup$
    – rcgldr
    3 hours ago













6












6








6





$begingroup$


Irrational numbers like $pi$, $e$ and $sqrt2$ have a unique and non-repeating sequence after the decimal point. If we extract the $n$-th digit from such numbers (where $n$ is the number of times the method is called) and make a number with the digits as it is, should we not get a perfect random number generator? For example, if we're using $sqrt2$, $e$ and $pi$, the first number is 123, second one is 471, the next one is 184 and so on.










share|cite|improve this question









New contributor




Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Irrational numbers like $pi$, $e$ and $sqrt2$ have a unique and non-repeating sequence after the decimal point. If we extract the $n$-th digit from such numbers (where $n$ is the number of times the method is called) and make a number with the digits as it is, should we not get a perfect random number generator? For example, if we're using $sqrt2$, $e$ and $pi$, the first number is 123, second one is 471, the next one is 184 and so on.







randomized-algorithms randomness random-number-generator






share|cite|improve this question









New contributor




Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 14 hours ago









dkaeae

2,3421922




2,3421922






New contributor




Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 15 hours ago









Abhradeep SarkarAbhradeep Sarkar

312




312




New contributor




Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Abhradeep Sarkar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Related: mathoverflow.net/questions/26942/…
    $endgroup$
    – BurnsBA
    10 hours ago






  • 9




    $begingroup$
    You have a strange definition of "random" in your head. "Random" means "unpredictable". How is your sequence unpredictable? What definition of "random" do you have in mind? Perhaps what you are calling "random" has another name.
    $endgroup$
    – Eric Lippert
    10 hours ago











  • $begingroup$
    Essentially the same question was asked here: cs.stackexchange.com/q/65078/755. (Community votes requested -- should these be merged? Should one be closed as a dup of the other?)
    $endgroup$
    – D.W.
    9 hours ago











  • $begingroup$
    Note the spigot algorithm can be used to generate any hex digit in pi, without having to generate prior digits.
    $endgroup$
    – rcgldr
    3 hours ago
















  • $begingroup$
    Related: mathoverflow.net/questions/26942/…
    $endgroup$
    – BurnsBA
    10 hours ago






  • 9




    $begingroup$
    You have a strange definition of "random" in your head. "Random" means "unpredictable". How is your sequence unpredictable? What definition of "random" do you have in mind? Perhaps what you are calling "random" has another name.
    $endgroup$
    – Eric Lippert
    10 hours ago











  • $begingroup$
    Essentially the same question was asked here: cs.stackexchange.com/q/65078/755. (Community votes requested -- should these be merged? Should one be closed as a dup of the other?)
    $endgroup$
    – D.W.
    9 hours ago











  • $begingroup$
    Note the spigot algorithm can be used to generate any hex digit in pi, without having to generate prior digits.
    $endgroup$
    – rcgldr
    3 hours ago















$begingroup$
Related: mathoverflow.net/questions/26942/…
$endgroup$
– BurnsBA
10 hours ago




$begingroup$
Related: mathoverflow.net/questions/26942/…
$endgroup$
– BurnsBA
10 hours ago




9




9




$begingroup$
You have a strange definition of "random" in your head. "Random" means "unpredictable". How is your sequence unpredictable? What definition of "random" do you have in mind? Perhaps what you are calling "random" has another name.
$endgroup$
– Eric Lippert
10 hours ago





$begingroup$
You have a strange definition of "random" in your head. "Random" means "unpredictable". How is your sequence unpredictable? What definition of "random" do you have in mind? Perhaps what you are calling "random" has another name.
$endgroup$
– Eric Lippert
10 hours ago













$begingroup$
Essentially the same question was asked here: cs.stackexchange.com/q/65078/755. (Community votes requested -- should these be merged? Should one be closed as a dup of the other?)
$endgroup$
– D.W.
9 hours ago





$begingroup$
Essentially the same question was asked here: cs.stackexchange.com/q/65078/755. (Community votes requested -- should these be merged? Should one be closed as a dup of the other?)
$endgroup$
– D.W.
9 hours ago













$begingroup$
Note the spigot algorithm can be used to generate any hex digit in pi, without having to generate prior digits.
$endgroup$
– rcgldr
3 hours ago




$begingroup$
Note the spigot algorithm can be used to generate any hex digit in pi, without having to generate prior digits.
$endgroup$
– rcgldr
3 hours ago










4 Answers
4






active

oldest

votes


















18












$begingroup$

It is cryptographically useless because an adversary can predict every single digit. It is also very time consuming.






share|cite|improve this answer









$endgroup$








  • 7




    $begingroup$
    OP never mentions cryptography...
    $endgroup$
    – AnoE
    11 hours ago






  • 3




    $begingroup$
    @AnoE So? That this process would be cryptographically useless is still relevant because crypto is an avid user of randomness. If you bring up the devices /dev/random and /dev/urandom someone will invariably bring up cryptography.
    $endgroup$
    – Greg Schmit
    11 hours ago






  • 2




    $begingroup$
    You would be amazed at how useless cryptographic security is in real time PRNG generation. irrational numbers are often used in GPU PRNGs. There are a lot of applications where how "secure" your PRNG is simply irrelevant. What matters in something like coherent noise generation is the quality of distribution and how often your period repeats, and correlation effects due to adjacent seeds (which would require avalanche mixers to fix). Quite honestly your answer is wrong, doesn't belong here, and should probably be deleted.
    $endgroup$
    – opa
    10 hours ago







  • 3




    $begingroup$
    This is anot an answer to the question. Note the OP of the linked question uses random numbers for seeding a monte carlo analysis. An update to address the question asked should be considered. mathoverflow.net/questions/26942/…
    $endgroup$
    – CramerTV
    10 hours ago











  • $begingroup$
    Mersenne Twister isn't cryptographically secure either, but it's one of the most common PRNGs out there, so I wouldn't say that's grounds to call it useless. I do agree that it would be unreasonably time consuming, though.
    $endgroup$
    – DarthFennec
    8 hours ago


















16












$begingroup$

For any reasonable definition of perfect, the mechanism you describe is not a perfect random number generator.



  • Non-repeating isn't enough. The decimal number $0.10100100010001dots$ is non-repeating but it's a terrible generator of random digits, since the answer is "always" zero, occasionally one, and never anything else.


  • We don't actually know if every digit occurs equally often in the decimal expansion of $pi$ or $mathrme$ (though we suspect they do).


  • In many situations, we require random numbers to be unpredictable (indeed, if you asked a random person what "random" means, they'd probably say something about unpredictability). The digits of well-known constants are totally predictable.


  • We usually want to generate random numbers reasonably quickly, but generating successive digits of mathematical constants tends to be quite expensive.


  • It is, however, true that the digits of $pi$ and $mathrme$ look statistically random, in the sense that every possible sequence of digits seems to occur about as often as it should. So, for example, each digit does occur very close to one time in ten; each two-digit sequence very close to one in a hundred, and so on.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    For the third point, there must be some sort of 'secret' input to your generation process for it to be unpredictable (the generation process itself should be deterministic if we don't want to rely on yet another random number generator.). This extra input is often called a seed.
    $endgroup$
    – Discrete lizard
    14 hours ago






  • 1




    $begingroup$
    @Discretelizard This is true but there's not much scope for seeding beyond "return successive digits starting with position $s$." By the time you've seen $2log s$ digits, that sequence occurs only a few times within the first $s^2$ digits of $pi$, so it's unique within the first $s$ digits with high probability and you know the seed.
    $endgroup$
    – David Richerby
    11 hours ago











  • $begingroup$
    I was not suggesting to try seeding with this approach. However, now that you mention it, would it help to not look at successive digits, but at the $scdot n$'th digit? I guess that would probably be too expensive to compute, but I don't directly see any other problems.
    $endgroup$
    – Discrete lizard
    11 hours ago










  • $begingroup$
    Computing digits of irrational numbers is expensive, but hasn't that work already been done? We can just download or access a copy of all the digits. A class time-space tradeoff.
    $endgroup$
    – Barmar
    5 hours ago










  • $begingroup$
    @Barmar: At that point you have to ask whether this technique is really more performant (and more space-efficient) than a "standard" PRNG would be.
    $endgroup$
    – Kevin
    3 hours ago



















3












$begingroup$

Duplicate, but nice question. It was already answered https://math.stackexchange.com/questions/51829/distribution-of-the-digits-of-pi:




...it is believed that $pi$ is a normal number (~uniform distribution of every digits sequence).




For digit distribution data, see e.g. http://www.eveandersson.com/pi/precalculated-frequencies or https://thestarman.pcministry.com/math/pi/RandPI.html (first 1000 digits):



enter image description here



At mathoverflow, there are also nice answers at:



  • What is the state of our ignorance about the normality of pi?

  • Does pi contain 1000 consecutive zeroes?





share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    If you believe the question is a duplicate, then why are you answering it? You should simply flag it, not reinforce undesired posting behavior.
    $endgroup$
    – dkaeae
    11 hours ago






  • 3




    $begingroup$
    @dkaeae There is no support for duplicates of questions on other sites. Furthermore, the same question on different sites can get different answers. In this case, a site such as Mathematics might not give much consideration to security concerns. See also this answer. Do note that we discourage asking the same question on multiple sites at the same time, since this tends to lead to wasted efforts. But the same question by different persons at different times on different sites is usually ok.
    $endgroup$
    – Discrete lizard
    11 hours ago






  • 3




    $begingroup$
    Unfortunately, just because a number is normal doesn't mean that outputting its digits gives you a good RNG. The outputs of such a RNG are still entirely predictable. Whether that's acceptable might depend on the application. So, I don't think it's quite as simple as saying "pi is normal, case closed".
    $endgroup$
    – D.W.
    9 hours ago



















0












$begingroup$

In general, this approach does not work: "randomness" does not mean that you get a lot of different digits, but there are other aspects as well. For example, a classic test is to see if all two-digit, or three-digit etc. combinations occur with the same frequency. This would be a very simple test, which can rule out obvious non-random results, but is still by far too simplistic to check for really random behaviour.



See the Wikipedia page about Randomness Tests as a collection of links to primary sources regarding this. They do mention a good amount of quite complicated-sounding concepts; it is it not so important to go into deep detail about this - but it is clear that it is not intuitively possible to declare a specific number to be a good source for such digits.



On a positive note: For a specific irrational number, you are of course free to just try it; i.e., calculate the number to a sufficiantly large degree of digits, and run it through all known tests (there are tools for that, see above link). If the measure is good enough for your use case, and if you are aware that this is obviously useless for cryptographical applications, and always get the same numbers if you should start over, and that the quality might degrade if you get past the n you picked for testing the randomness, you could use those numbers. But it will be far better to use a dedicated (pseudo-)random number generator; and nothing beats a good physical source of randomness.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    OK but $pi$ and $mathrme$ have the property that all the 2, 3, 4, ... digit sequences do empirically turn up with the right frequency. Nobody's managed to prove it but it seem to be true.
    $endgroup$
    – David Richerby
    11 hours ago










  • $begingroup$
    Ayrat's answer links to other sites where mathematicians have done these tests. They believe, but haven't proved, that π meets the statistical tests.
    $endgroup$
    – Barmar
    5 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Abhradeep Sarkar is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106774%2fcan-we-generate-random-numbers-using-irrational-numbers-like-%25cf%2580-and-e%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























4 Answers
4






active

oldest

votes








4 Answers
4






active

oldest

votes









active

oldest

votes






active

oldest

votes









18












$begingroup$

It is cryptographically useless because an adversary can predict every single digit. It is also very time consuming.






share|cite|improve this answer









$endgroup$








  • 7




    $begingroup$
    OP never mentions cryptography...
    $endgroup$
    – AnoE
    11 hours ago






  • 3




    $begingroup$
    @AnoE So? That this process would be cryptographically useless is still relevant because crypto is an avid user of randomness. If you bring up the devices /dev/random and /dev/urandom someone will invariably bring up cryptography.
    $endgroup$
    – Greg Schmit
    11 hours ago






  • 2




    $begingroup$
    You would be amazed at how useless cryptographic security is in real time PRNG generation. irrational numbers are often used in GPU PRNGs. There are a lot of applications where how "secure" your PRNG is simply irrelevant. What matters in something like coherent noise generation is the quality of distribution and how often your period repeats, and correlation effects due to adjacent seeds (which would require avalanche mixers to fix). Quite honestly your answer is wrong, doesn't belong here, and should probably be deleted.
    $endgroup$
    – opa
    10 hours ago







  • 3




    $begingroup$
    This is anot an answer to the question. Note the OP of the linked question uses random numbers for seeding a monte carlo analysis. An update to address the question asked should be considered. mathoverflow.net/questions/26942/…
    $endgroup$
    – CramerTV
    10 hours ago











  • $begingroup$
    Mersenne Twister isn't cryptographically secure either, but it's one of the most common PRNGs out there, so I wouldn't say that's grounds to call it useless. I do agree that it would be unreasonably time consuming, though.
    $endgroup$
    – DarthFennec
    8 hours ago















18












$begingroup$

It is cryptographically useless because an adversary can predict every single digit. It is also very time consuming.






share|cite|improve this answer









$endgroup$








  • 7




    $begingroup$
    OP never mentions cryptography...
    $endgroup$
    – AnoE
    11 hours ago






  • 3




    $begingroup$
    @AnoE So? That this process would be cryptographically useless is still relevant because crypto is an avid user of randomness. If you bring up the devices /dev/random and /dev/urandom someone will invariably bring up cryptography.
    $endgroup$
    – Greg Schmit
    11 hours ago






  • 2




    $begingroup$
    You would be amazed at how useless cryptographic security is in real time PRNG generation. irrational numbers are often used in GPU PRNGs. There are a lot of applications where how "secure" your PRNG is simply irrelevant. What matters in something like coherent noise generation is the quality of distribution and how often your period repeats, and correlation effects due to adjacent seeds (which would require avalanche mixers to fix). Quite honestly your answer is wrong, doesn't belong here, and should probably be deleted.
    $endgroup$
    – opa
    10 hours ago







  • 3




    $begingroup$
    This is anot an answer to the question. Note the OP of the linked question uses random numbers for seeding a monte carlo analysis. An update to address the question asked should be considered. mathoverflow.net/questions/26942/…
    $endgroup$
    – CramerTV
    10 hours ago











  • $begingroup$
    Mersenne Twister isn't cryptographically secure either, but it's one of the most common PRNGs out there, so I wouldn't say that's grounds to call it useless. I do agree that it would be unreasonably time consuming, though.
    $endgroup$
    – DarthFennec
    8 hours ago













18












18








18





$begingroup$

It is cryptographically useless because an adversary can predict every single digit. It is also very time consuming.






share|cite|improve this answer









$endgroup$



It is cryptographically useless because an adversary can predict every single digit. It is also very time consuming.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 15 hours ago









gnasher729gnasher729

11.8k1218




11.8k1218







  • 7




    $begingroup$
    OP never mentions cryptography...
    $endgroup$
    – AnoE
    11 hours ago






  • 3




    $begingroup$
    @AnoE So? That this process would be cryptographically useless is still relevant because crypto is an avid user of randomness. If you bring up the devices /dev/random and /dev/urandom someone will invariably bring up cryptography.
    $endgroup$
    – Greg Schmit
    11 hours ago






  • 2




    $begingroup$
    You would be amazed at how useless cryptographic security is in real time PRNG generation. irrational numbers are often used in GPU PRNGs. There are a lot of applications where how "secure" your PRNG is simply irrelevant. What matters in something like coherent noise generation is the quality of distribution and how often your period repeats, and correlation effects due to adjacent seeds (which would require avalanche mixers to fix). Quite honestly your answer is wrong, doesn't belong here, and should probably be deleted.
    $endgroup$
    – opa
    10 hours ago







  • 3




    $begingroup$
    This is anot an answer to the question. Note the OP of the linked question uses random numbers for seeding a monte carlo analysis. An update to address the question asked should be considered. mathoverflow.net/questions/26942/…
    $endgroup$
    – CramerTV
    10 hours ago











  • $begingroup$
    Mersenne Twister isn't cryptographically secure either, but it's one of the most common PRNGs out there, so I wouldn't say that's grounds to call it useless. I do agree that it would be unreasonably time consuming, though.
    $endgroup$
    – DarthFennec
    8 hours ago












  • 7




    $begingroup$
    OP never mentions cryptography...
    $endgroup$
    – AnoE
    11 hours ago






  • 3




    $begingroup$
    @AnoE So? That this process would be cryptographically useless is still relevant because crypto is an avid user of randomness. If you bring up the devices /dev/random and /dev/urandom someone will invariably bring up cryptography.
    $endgroup$
    – Greg Schmit
    11 hours ago






  • 2




    $begingroup$
    You would be amazed at how useless cryptographic security is in real time PRNG generation. irrational numbers are often used in GPU PRNGs. There are a lot of applications where how "secure" your PRNG is simply irrelevant. What matters in something like coherent noise generation is the quality of distribution and how often your period repeats, and correlation effects due to adjacent seeds (which would require avalanche mixers to fix). Quite honestly your answer is wrong, doesn't belong here, and should probably be deleted.
    $endgroup$
    – opa
    10 hours ago







  • 3




    $begingroup$
    This is anot an answer to the question. Note the OP of the linked question uses random numbers for seeding a monte carlo analysis. An update to address the question asked should be considered. mathoverflow.net/questions/26942/…
    $endgroup$
    – CramerTV
    10 hours ago











  • $begingroup$
    Mersenne Twister isn't cryptographically secure either, but it's one of the most common PRNGs out there, so I wouldn't say that's grounds to call it useless. I do agree that it would be unreasonably time consuming, though.
    $endgroup$
    – DarthFennec
    8 hours ago







7




7




$begingroup$
OP never mentions cryptography...
$endgroup$
– AnoE
11 hours ago




$begingroup$
OP never mentions cryptography...
$endgroup$
– AnoE
11 hours ago




3




3




$begingroup$
@AnoE So? That this process would be cryptographically useless is still relevant because crypto is an avid user of randomness. If you bring up the devices /dev/random and /dev/urandom someone will invariably bring up cryptography.
$endgroup$
– Greg Schmit
11 hours ago




$begingroup$
@AnoE So? That this process would be cryptographically useless is still relevant because crypto is an avid user of randomness. If you bring up the devices /dev/random and /dev/urandom someone will invariably bring up cryptography.
$endgroup$
– Greg Schmit
11 hours ago




2




2




$begingroup$
You would be amazed at how useless cryptographic security is in real time PRNG generation. irrational numbers are often used in GPU PRNGs. There are a lot of applications where how "secure" your PRNG is simply irrelevant. What matters in something like coherent noise generation is the quality of distribution and how often your period repeats, and correlation effects due to adjacent seeds (which would require avalanche mixers to fix). Quite honestly your answer is wrong, doesn't belong here, and should probably be deleted.
$endgroup$
– opa
10 hours ago





$begingroup$
You would be amazed at how useless cryptographic security is in real time PRNG generation. irrational numbers are often used in GPU PRNGs. There are a lot of applications where how "secure" your PRNG is simply irrelevant. What matters in something like coherent noise generation is the quality of distribution and how often your period repeats, and correlation effects due to adjacent seeds (which would require avalanche mixers to fix). Quite honestly your answer is wrong, doesn't belong here, and should probably be deleted.
$endgroup$
– opa
10 hours ago





3




3




$begingroup$
This is anot an answer to the question. Note the OP of the linked question uses random numbers for seeding a monte carlo analysis. An update to address the question asked should be considered. mathoverflow.net/questions/26942/…
$endgroup$
– CramerTV
10 hours ago





$begingroup$
This is anot an answer to the question. Note the OP of the linked question uses random numbers for seeding a monte carlo analysis. An update to address the question asked should be considered. mathoverflow.net/questions/26942/…
$endgroup$
– CramerTV
10 hours ago













$begingroup$
Mersenne Twister isn't cryptographically secure either, but it's one of the most common PRNGs out there, so I wouldn't say that's grounds to call it useless. I do agree that it would be unreasonably time consuming, though.
$endgroup$
– DarthFennec
8 hours ago




$begingroup$
Mersenne Twister isn't cryptographically secure either, but it's one of the most common PRNGs out there, so I wouldn't say that's grounds to call it useless. I do agree that it would be unreasonably time consuming, though.
$endgroup$
– DarthFennec
8 hours ago











16












$begingroup$

For any reasonable definition of perfect, the mechanism you describe is not a perfect random number generator.



  • Non-repeating isn't enough. The decimal number $0.10100100010001dots$ is non-repeating but it's a terrible generator of random digits, since the answer is "always" zero, occasionally one, and never anything else.


  • We don't actually know if every digit occurs equally often in the decimal expansion of $pi$ or $mathrme$ (though we suspect they do).


  • In many situations, we require random numbers to be unpredictable (indeed, if you asked a random person what "random" means, they'd probably say something about unpredictability). The digits of well-known constants are totally predictable.


  • We usually want to generate random numbers reasonably quickly, but generating successive digits of mathematical constants tends to be quite expensive.


  • It is, however, true that the digits of $pi$ and $mathrme$ look statistically random, in the sense that every possible sequence of digits seems to occur about as often as it should. So, for example, each digit does occur very close to one time in ten; each two-digit sequence very close to one in a hundred, and so on.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    For the third point, there must be some sort of 'secret' input to your generation process for it to be unpredictable (the generation process itself should be deterministic if we don't want to rely on yet another random number generator.). This extra input is often called a seed.
    $endgroup$
    – Discrete lizard
    14 hours ago






  • 1




    $begingroup$
    @Discretelizard This is true but there's not much scope for seeding beyond "return successive digits starting with position $s$." By the time you've seen $2log s$ digits, that sequence occurs only a few times within the first $s^2$ digits of $pi$, so it's unique within the first $s$ digits with high probability and you know the seed.
    $endgroup$
    – David Richerby
    11 hours ago











  • $begingroup$
    I was not suggesting to try seeding with this approach. However, now that you mention it, would it help to not look at successive digits, but at the $scdot n$'th digit? I guess that would probably be too expensive to compute, but I don't directly see any other problems.
    $endgroup$
    – Discrete lizard
    11 hours ago










  • $begingroup$
    Computing digits of irrational numbers is expensive, but hasn't that work already been done? We can just download or access a copy of all the digits. A class time-space tradeoff.
    $endgroup$
    – Barmar
    5 hours ago










  • $begingroup$
    @Barmar: At that point you have to ask whether this technique is really more performant (and more space-efficient) than a "standard" PRNG would be.
    $endgroup$
    – Kevin
    3 hours ago
















16












$begingroup$

For any reasonable definition of perfect, the mechanism you describe is not a perfect random number generator.



  • Non-repeating isn't enough. The decimal number $0.10100100010001dots$ is non-repeating but it's a terrible generator of random digits, since the answer is "always" zero, occasionally one, and never anything else.


  • We don't actually know if every digit occurs equally often in the decimal expansion of $pi$ or $mathrme$ (though we suspect they do).


  • In many situations, we require random numbers to be unpredictable (indeed, if you asked a random person what "random" means, they'd probably say something about unpredictability). The digits of well-known constants are totally predictable.


  • We usually want to generate random numbers reasonably quickly, but generating successive digits of mathematical constants tends to be quite expensive.


  • It is, however, true that the digits of $pi$ and $mathrme$ look statistically random, in the sense that every possible sequence of digits seems to occur about as often as it should. So, for example, each digit does occur very close to one time in ten; each two-digit sequence very close to one in a hundred, and so on.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    For the third point, there must be some sort of 'secret' input to your generation process for it to be unpredictable (the generation process itself should be deterministic if we don't want to rely on yet another random number generator.). This extra input is often called a seed.
    $endgroup$
    – Discrete lizard
    14 hours ago






  • 1




    $begingroup$
    @Discretelizard This is true but there's not much scope for seeding beyond "return successive digits starting with position $s$." By the time you've seen $2log s$ digits, that sequence occurs only a few times within the first $s^2$ digits of $pi$, so it's unique within the first $s$ digits with high probability and you know the seed.
    $endgroup$
    – David Richerby
    11 hours ago











  • $begingroup$
    I was not suggesting to try seeding with this approach. However, now that you mention it, would it help to not look at successive digits, but at the $scdot n$'th digit? I guess that would probably be too expensive to compute, but I don't directly see any other problems.
    $endgroup$
    – Discrete lizard
    11 hours ago










  • $begingroup$
    Computing digits of irrational numbers is expensive, but hasn't that work already been done? We can just download or access a copy of all the digits. A class time-space tradeoff.
    $endgroup$
    – Barmar
    5 hours ago










  • $begingroup$
    @Barmar: At that point you have to ask whether this technique is really more performant (and more space-efficient) than a "standard" PRNG would be.
    $endgroup$
    – Kevin
    3 hours ago














16












16








16





$begingroup$

For any reasonable definition of perfect, the mechanism you describe is not a perfect random number generator.



  • Non-repeating isn't enough. The decimal number $0.10100100010001dots$ is non-repeating but it's a terrible generator of random digits, since the answer is "always" zero, occasionally one, and never anything else.


  • We don't actually know if every digit occurs equally often in the decimal expansion of $pi$ or $mathrme$ (though we suspect they do).


  • In many situations, we require random numbers to be unpredictable (indeed, if you asked a random person what "random" means, they'd probably say something about unpredictability). The digits of well-known constants are totally predictable.


  • We usually want to generate random numbers reasonably quickly, but generating successive digits of mathematical constants tends to be quite expensive.


  • It is, however, true that the digits of $pi$ and $mathrme$ look statistically random, in the sense that every possible sequence of digits seems to occur about as often as it should. So, for example, each digit does occur very close to one time in ten; each two-digit sequence very close to one in a hundred, and so on.






share|cite|improve this answer









$endgroup$



For any reasonable definition of perfect, the mechanism you describe is not a perfect random number generator.



  • Non-repeating isn't enough. The decimal number $0.10100100010001dots$ is non-repeating but it's a terrible generator of random digits, since the answer is "always" zero, occasionally one, and never anything else.


  • We don't actually know if every digit occurs equally often in the decimal expansion of $pi$ or $mathrme$ (though we suspect they do).


  • In many situations, we require random numbers to be unpredictable (indeed, if you asked a random person what "random" means, they'd probably say something about unpredictability). The digits of well-known constants are totally predictable.


  • We usually want to generate random numbers reasonably quickly, but generating successive digits of mathematical constants tends to be quite expensive.


  • It is, however, true that the digits of $pi$ and $mathrme$ look statistically random, in the sense that every possible sequence of digits seems to occur about as often as it should. So, for example, each digit does occur very close to one time in ten; each two-digit sequence very close to one in a hundred, and so on.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 14 hours ago









David RicherbyDavid Richerby

70k15106196




70k15106196







  • 2




    $begingroup$
    For the third point, there must be some sort of 'secret' input to your generation process for it to be unpredictable (the generation process itself should be deterministic if we don't want to rely on yet another random number generator.). This extra input is often called a seed.
    $endgroup$
    – Discrete lizard
    14 hours ago






  • 1




    $begingroup$
    @Discretelizard This is true but there's not much scope for seeding beyond "return successive digits starting with position $s$." By the time you've seen $2log s$ digits, that sequence occurs only a few times within the first $s^2$ digits of $pi$, so it's unique within the first $s$ digits with high probability and you know the seed.
    $endgroup$
    – David Richerby
    11 hours ago











  • $begingroup$
    I was not suggesting to try seeding with this approach. However, now that you mention it, would it help to not look at successive digits, but at the $scdot n$'th digit? I guess that would probably be too expensive to compute, but I don't directly see any other problems.
    $endgroup$
    – Discrete lizard
    11 hours ago










  • $begingroup$
    Computing digits of irrational numbers is expensive, but hasn't that work already been done? We can just download or access a copy of all the digits. A class time-space tradeoff.
    $endgroup$
    – Barmar
    5 hours ago










  • $begingroup$
    @Barmar: At that point you have to ask whether this technique is really more performant (and more space-efficient) than a "standard" PRNG would be.
    $endgroup$
    – Kevin
    3 hours ago













  • 2




    $begingroup$
    For the third point, there must be some sort of 'secret' input to your generation process for it to be unpredictable (the generation process itself should be deterministic if we don't want to rely on yet another random number generator.). This extra input is often called a seed.
    $endgroup$
    – Discrete lizard
    14 hours ago






  • 1




    $begingroup$
    @Discretelizard This is true but there's not much scope for seeding beyond "return successive digits starting with position $s$." By the time you've seen $2log s$ digits, that sequence occurs only a few times within the first $s^2$ digits of $pi$, so it's unique within the first $s$ digits with high probability and you know the seed.
    $endgroup$
    – David Richerby
    11 hours ago











  • $begingroup$
    I was not suggesting to try seeding with this approach. However, now that you mention it, would it help to not look at successive digits, but at the $scdot n$'th digit? I guess that would probably be too expensive to compute, but I don't directly see any other problems.
    $endgroup$
    – Discrete lizard
    11 hours ago










  • $begingroup$
    Computing digits of irrational numbers is expensive, but hasn't that work already been done? We can just download or access a copy of all the digits. A class time-space tradeoff.
    $endgroup$
    – Barmar
    5 hours ago










  • $begingroup$
    @Barmar: At that point you have to ask whether this technique is really more performant (and more space-efficient) than a "standard" PRNG would be.
    $endgroup$
    – Kevin
    3 hours ago








2




2




$begingroup$
For the third point, there must be some sort of 'secret' input to your generation process for it to be unpredictable (the generation process itself should be deterministic if we don't want to rely on yet another random number generator.). This extra input is often called a seed.
$endgroup$
– Discrete lizard
14 hours ago




$begingroup$
For the third point, there must be some sort of 'secret' input to your generation process for it to be unpredictable (the generation process itself should be deterministic if we don't want to rely on yet another random number generator.). This extra input is often called a seed.
$endgroup$
– Discrete lizard
14 hours ago




1




1




$begingroup$
@Discretelizard This is true but there's not much scope for seeding beyond "return successive digits starting with position $s$." By the time you've seen $2log s$ digits, that sequence occurs only a few times within the first $s^2$ digits of $pi$, so it's unique within the first $s$ digits with high probability and you know the seed.
$endgroup$
– David Richerby
11 hours ago





$begingroup$
@Discretelizard This is true but there's not much scope for seeding beyond "return successive digits starting with position $s$." By the time you've seen $2log s$ digits, that sequence occurs only a few times within the first $s^2$ digits of $pi$, so it's unique within the first $s$ digits with high probability and you know the seed.
$endgroup$
– David Richerby
11 hours ago













$begingroup$
I was not suggesting to try seeding with this approach. However, now that you mention it, would it help to not look at successive digits, but at the $scdot n$'th digit? I guess that would probably be too expensive to compute, but I don't directly see any other problems.
$endgroup$
– Discrete lizard
11 hours ago




$begingroup$
I was not suggesting to try seeding with this approach. However, now that you mention it, would it help to not look at successive digits, but at the $scdot n$'th digit? I guess that would probably be too expensive to compute, but I don't directly see any other problems.
$endgroup$
– Discrete lizard
11 hours ago












$begingroup$
Computing digits of irrational numbers is expensive, but hasn't that work already been done? We can just download or access a copy of all the digits. A class time-space tradeoff.
$endgroup$
– Barmar
5 hours ago




$begingroup$
Computing digits of irrational numbers is expensive, but hasn't that work already been done? We can just download or access a copy of all the digits. A class time-space tradeoff.
$endgroup$
– Barmar
5 hours ago












$begingroup$
@Barmar: At that point you have to ask whether this technique is really more performant (and more space-efficient) than a "standard" PRNG would be.
$endgroup$
– Kevin
3 hours ago





$begingroup$
@Barmar: At that point you have to ask whether this technique is really more performant (and more space-efficient) than a "standard" PRNG would be.
$endgroup$
– Kevin
3 hours ago












3












$begingroup$

Duplicate, but nice question. It was already answered https://math.stackexchange.com/questions/51829/distribution-of-the-digits-of-pi:




...it is believed that $pi$ is a normal number (~uniform distribution of every digits sequence).




For digit distribution data, see e.g. http://www.eveandersson.com/pi/precalculated-frequencies or https://thestarman.pcministry.com/math/pi/RandPI.html (first 1000 digits):



enter image description here



At mathoverflow, there are also nice answers at:



  • What is the state of our ignorance about the normality of pi?

  • Does pi contain 1000 consecutive zeroes?





share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    If you believe the question is a duplicate, then why are you answering it? You should simply flag it, not reinforce undesired posting behavior.
    $endgroup$
    – dkaeae
    11 hours ago






  • 3




    $begingroup$
    @dkaeae There is no support for duplicates of questions on other sites. Furthermore, the same question on different sites can get different answers. In this case, a site such as Mathematics might not give much consideration to security concerns. See also this answer. Do note that we discourage asking the same question on multiple sites at the same time, since this tends to lead to wasted efforts. But the same question by different persons at different times on different sites is usually ok.
    $endgroup$
    – Discrete lizard
    11 hours ago






  • 3




    $begingroup$
    Unfortunately, just because a number is normal doesn't mean that outputting its digits gives you a good RNG. The outputs of such a RNG are still entirely predictable. Whether that's acceptable might depend on the application. So, I don't think it's quite as simple as saying "pi is normal, case closed".
    $endgroup$
    – D.W.
    9 hours ago
















3












$begingroup$

Duplicate, but nice question. It was already answered https://math.stackexchange.com/questions/51829/distribution-of-the-digits-of-pi:




...it is believed that $pi$ is a normal number (~uniform distribution of every digits sequence).




For digit distribution data, see e.g. http://www.eveandersson.com/pi/precalculated-frequencies or https://thestarman.pcministry.com/math/pi/RandPI.html (first 1000 digits):



enter image description here



At mathoverflow, there are also nice answers at:



  • What is the state of our ignorance about the normality of pi?

  • Does pi contain 1000 consecutive zeroes?





share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    If you believe the question is a duplicate, then why are you answering it? You should simply flag it, not reinforce undesired posting behavior.
    $endgroup$
    – dkaeae
    11 hours ago






  • 3




    $begingroup$
    @dkaeae There is no support for duplicates of questions on other sites. Furthermore, the same question on different sites can get different answers. In this case, a site such as Mathematics might not give much consideration to security concerns. See also this answer. Do note that we discourage asking the same question on multiple sites at the same time, since this tends to lead to wasted efforts. But the same question by different persons at different times on different sites is usually ok.
    $endgroup$
    – Discrete lizard
    11 hours ago






  • 3




    $begingroup$
    Unfortunately, just because a number is normal doesn't mean that outputting its digits gives you a good RNG. The outputs of such a RNG are still entirely predictable. Whether that's acceptable might depend on the application. So, I don't think it's quite as simple as saying "pi is normal, case closed".
    $endgroup$
    – D.W.
    9 hours ago














3












3








3





$begingroup$

Duplicate, but nice question. It was already answered https://math.stackexchange.com/questions/51829/distribution-of-the-digits-of-pi:




...it is believed that $pi$ is a normal number (~uniform distribution of every digits sequence).




For digit distribution data, see e.g. http://www.eveandersson.com/pi/precalculated-frequencies or https://thestarman.pcministry.com/math/pi/RandPI.html (first 1000 digits):



enter image description here



At mathoverflow, there are also nice answers at:



  • What is the state of our ignorance about the normality of pi?

  • Does pi contain 1000 consecutive zeroes?





share|cite|improve this answer











$endgroup$



Duplicate, but nice question. It was already answered https://math.stackexchange.com/questions/51829/distribution-of-the-digits-of-pi:




...it is believed that $pi$ is a normal number (~uniform distribution of every digits sequence).




For digit distribution data, see e.g. http://www.eveandersson.com/pi/precalculated-frequencies or https://thestarman.pcministry.com/math/pi/RandPI.html (first 1000 digits):



enter image description here



At mathoverflow, there are also nice answers at:



  • What is the state of our ignorance about the normality of pi?

  • Does pi contain 1000 consecutive zeroes?






share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 14 hours ago









Discrete lizard

4,45011538




4,45011538










answered 14 hours ago









AyratAyrat

4781419




4781419







  • 1




    $begingroup$
    If you believe the question is a duplicate, then why are you answering it? You should simply flag it, not reinforce undesired posting behavior.
    $endgroup$
    – dkaeae
    11 hours ago






  • 3




    $begingroup$
    @dkaeae There is no support for duplicates of questions on other sites. Furthermore, the same question on different sites can get different answers. In this case, a site such as Mathematics might not give much consideration to security concerns. See also this answer. Do note that we discourage asking the same question on multiple sites at the same time, since this tends to lead to wasted efforts. But the same question by different persons at different times on different sites is usually ok.
    $endgroup$
    – Discrete lizard
    11 hours ago






  • 3




    $begingroup$
    Unfortunately, just because a number is normal doesn't mean that outputting its digits gives you a good RNG. The outputs of such a RNG are still entirely predictable. Whether that's acceptable might depend on the application. So, I don't think it's quite as simple as saying "pi is normal, case closed".
    $endgroup$
    – D.W.
    9 hours ago













  • 1




    $begingroup$
    If you believe the question is a duplicate, then why are you answering it? You should simply flag it, not reinforce undesired posting behavior.
    $endgroup$
    – dkaeae
    11 hours ago






  • 3




    $begingroup$
    @dkaeae There is no support for duplicates of questions on other sites. Furthermore, the same question on different sites can get different answers. In this case, a site such as Mathematics might not give much consideration to security concerns. See also this answer. Do note that we discourage asking the same question on multiple sites at the same time, since this tends to lead to wasted efforts. But the same question by different persons at different times on different sites is usually ok.
    $endgroup$
    – Discrete lizard
    11 hours ago






  • 3




    $begingroup$
    Unfortunately, just because a number is normal doesn't mean that outputting its digits gives you a good RNG. The outputs of such a RNG are still entirely predictable. Whether that's acceptable might depend on the application. So, I don't think it's quite as simple as saying "pi is normal, case closed".
    $endgroup$
    – D.W.
    9 hours ago








1




1




$begingroup$
If you believe the question is a duplicate, then why are you answering it? You should simply flag it, not reinforce undesired posting behavior.
$endgroup$
– dkaeae
11 hours ago




$begingroup$
If you believe the question is a duplicate, then why are you answering it? You should simply flag it, not reinforce undesired posting behavior.
$endgroup$
– dkaeae
11 hours ago




3




3




$begingroup$
@dkaeae There is no support for duplicates of questions on other sites. Furthermore, the same question on different sites can get different answers. In this case, a site such as Mathematics might not give much consideration to security concerns. See also this answer. Do note that we discourage asking the same question on multiple sites at the same time, since this tends to lead to wasted efforts. But the same question by different persons at different times on different sites is usually ok.
$endgroup$
– Discrete lizard
11 hours ago




$begingroup$
@dkaeae There is no support for duplicates of questions on other sites. Furthermore, the same question on different sites can get different answers. In this case, a site such as Mathematics might not give much consideration to security concerns. See also this answer. Do note that we discourage asking the same question on multiple sites at the same time, since this tends to lead to wasted efforts. But the same question by different persons at different times on different sites is usually ok.
$endgroup$
– Discrete lizard
11 hours ago




3




3




$begingroup$
Unfortunately, just because a number is normal doesn't mean that outputting its digits gives you a good RNG. The outputs of such a RNG are still entirely predictable. Whether that's acceptable might depend on the application. So, I don't think it's quite as simple as saying "pi is normal, case closed".
$endgroup$
– D.W.
9 hours ago





$begingroup$
Unfortunately, just because a number is normal doesn't mean that outputting its digits gives you a good RNG. The outputs of such a RNG are still entirely predictable. Whether that's acceptable might depend on the application. So, I don't think it's quite as simple as saying "pi is normal, case closed".
$endgroup$
– D.W.
9 hours ago












0












$begingroup$

In general, this approach does not work: "randomness" does not mean that you get a lot of different digits, but there are other aspects as well. For example, a classic test is to see if all two-digit, or three-digit etc. combinations occur with the same frequency. This would be a very simple test, which can rule out obvious non-random results, but is still by far too simplistic to check for really random behaviour.



See the Wikipedia page about Randomness Tests as a collection of links to primary sources regarding this. They do mention a good amount of quite complicated-sounding concepts; it is it not so important to go into deep detail about this - but it is clear that it is not intuitively possible to declare a specific number to be a good source for such digits.



On a positive note: For a specific irrational number, you are of course free to just try it; i.e., calculate the number to a sufficiantly large degree of digits, and run it through all known tests (there are tools for that, see above link). If the measure is good enough for your use case, and if you are aware that this is obviously useless for cryptographical applications, and always get the same numbers if you should start over, and that the quality might degrade if you get past the n you picked for testing the randomness, you could use those numbers. But it will be far better to use a dedicated (pseudo-)random number generator; and nothing beats a good physical source of randomness.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    OK but $pi$ and $mathrme$ have the property that all the 2, 3, 4, ... digit sequences do empirically turn up with the right frequency. Nobody's managed to prove it but it seem to be true.
    $endgroup$
    – David Richerby
    11 hours ago










  • $begingroup$
    Ayrat's answer links to other sites where mathematicians have done these tests. They believe, but haven't proved, that π meets the statistical tests.
    $endgroup$
    – Barmar
    5 hours ago















0












$begingroup$

In general, this approach does not work: "randomness" does not mean that you get a lot of different digits, but there are other aspects as well. For example, a classic test is to see if all two-digit, or three-digit etc. combinations occur with the same frequency. This would be a very simple test, which can rule out obvious non-random results, but is still by far too simplistic to check for really random behaviour.



See the Wikipedia page about Randomness Tests as a collection of links to primary sources regarding this. They do mention a good amount of quite complicated-sounding concepts; it is it not so important to go into deep detail about this - but it is clear that it is not intuitively possible to declare a specific number to be a good source for such digits.



On a positive note: For a specific irrational number, you are of course free to just try it; i.e., calculate the number to a sufficiantly large degree of digits, and run it through all known tests (there are tools for that, see above link). If the measure is good enough for your use case, and if you are aware that this is obviously useless for cryptographical applications, and always get the same numbers if you should start over, and that the quality might degrade if you get past the n you picked for testing the randomness, you could use those numbers. But it will be far better to use a dedicated (pseudo-)random number generator; and nothing beats a good physical source of randomness.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    OK but $pi$ and $mathrme$ have the property that all the 2, 3, 4, ... digit sequences do empirically turn up with the right frequency. Nobody's managed to prove it but it seem to be true.
    $endgroup$
    – David Richerby
    11 hours ago










  • $begingroup$
    Ayrat's answer links to other sites where mathematicians have done these tests. They believe, but haven't proved, that π meets the statistical tests.
    $endgroup$
    – Barmar
    5 hours ago













0












0








0





$begingroup$

In general, this approach does not work: "randomness" does not mean that you get a lot of different digits, but there are other aspects as well. For example, a classic test is to see if all two-digit, or three-digit etc. combinations occur with the same frequency. This would be a very simple test, which can rule out obvious non-random results, but is still by far too simplistic to check for really random behaviour.



See the Wikipedia page about Randomness Tests as a collection of links to primary sources regarding this. They do mention a good amount of quite complicated-sounding concepts; it is it not so important to go into deep detail about this - but it is clear that it is not intuitively possible to declare a specific number to be a good source for such digits.



On a positive note: For a specific irrational number, you are of course free to just try it; i.e., calculate the number to a sufficiantly large degree of digits, and run it through all known tests (there are tools for that, see above link). If the measure is good enough for your use case, and if you are aware that this is obviously useless for cryptographical applications, and always get the same numbers if you should start over, and that the quality might degrade if you get past the n you picked for testing the randomness, you could use those numbers. But it will be far better to use a dedicated (pseudo-)random number generator; and nothing beats a good physical source of randomness.






share|cite|improve this answer









$endgroup$



In general, this approach does not work: "randomness" does not mean that you get a lot of different digits, but there are other aspects as well. For example, a classic test is to see if all two-digit, or three-digit etc. combinations occur with the same frequency. This would be a very simple test, which can rule out obvious non-random results, but is still by far too simplistic to check for really random behaviour.



See the Wikipedia page about Randomness Tests as a collection of links to primary sources regarding this. They do mention a good amount of quite complicated-sounding concepts; it is it not so important to go into deep detail about this - but it is clear that it is not intuitively possible to declare a specific number to be a good source for such digits.



On a positive note: For a specific irrational number, you are of course free to just try it; i.e., calculate the number to a sufficiantly large degree of digits, and run it through all known tests (there are tools for that, see above link). If the measure is good enough for your use case, and if you are aware that this is obviously useless for cryptographical applications, and always get the same numbers if you should start over, and that the quality might degrade if you get past the n you picked for testing the randomness, you could use those numbers. But it will be far better to use a dedicated (pseudo-)random number generator; and nothing beats a good physical source of randomness.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 11 hours ago









AnoEAnoE

1,02749




1,02749







  • 1




    $begingroup$
    OK but $pi$ and $mathrme$ have the property that all the 2, 3, 4, ... digit sequences do empirically turn up with the right frequency. Nobody's managed to prove it but it seem to be true.
    $endgroup$
    – David Richerby
    11 hours ago










  • $begingroup$
    Ayrat's answer links to other sites where mathematicians have done these tests. They believe, but haven't proved, that π meets the statistical tests.
    $endgroup$
    – Barmar
    5 hours ago












  • 1




    $begingroup$
    OK but $pi$ and $mathrme$ have the property that all the 2, 3, 4, ... digit sequences do empirically turn up with the right frequency. Nobody's managed to prove it but it seem to be true.
    $endgroup$
    – David Richerby
    11 hours ago










  • $begingroup$
    Ayrat's answer links to other sites where mathematicians have done these tests. They believe, but haven't proved, that π meets the statistical tests.
    $endgroup$
    – Barmar
    5 hours ago







1




1




$begingroup$
OK but $pi$ and $mathrme$ have the property that all the 2, 3, 4, ... digit sequences do empirically turn up with the right frequency. Nobody's managed to prove it but it seem to be true.
$endgroup$
– David Richerby
11 hours ago




$begingroup$
OK but $pi$ and $mathrme$ have the property that all the 2, 3, 4, ... digit sequences do empirically turn up with the right frequency. Nobody's managed to prove it but it seem to be true.
$endgroup$
– David Richerby
11 hours ago












$begingroup$
Ayrat's answer links to other sites where mathematicians have done these tests. They believe, but haven't proved, that π meets the statistical tests.
$endgroup$
– Barmar
5 hours ago




$begingroup$
Ayrat's answer links to other sites where mathematicians have done these tests. They believe, but haven't proved, that π meets the statistical tests.
$endgroup$
– Barmar
5 hours ago










Abhradeep Sarkar is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Abhradeep Sarkar is a new contributor. Be nice, and check out our Code of Conduct.












Abhradeep Sarkar is a new contributor. Be nice, and check out our Code of Conduct.











Abhradeep Sarkar is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106774%2fcan-we-generate-random-numbers-using-irrational-numbers-like-%25cf%2580-and-e%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Куамањотепек (Чилапа де Алварез) Садржај Становништво Види још Референце Спољашње везе Мени за навигацију17°19′47″N 99°1′51″W / 17.32972° СГШ; 99.03083° ЗГД / 17.32972; -99.0308317°19′47″N 99°1′51″W / 17.32972° СГШ; 99.03083° ЗГД / 17.32972; -99.030838877656„Instituto Nacional de Estadística y Geografía”„The GeoNames geographical database”Мексичка насељапроширитиуу

How to make RAID controller rescan devices The 2019 Stack Overflow Developer Survey Results Are InLSI MegaRAID SAS 9261-8i: Disk isn't recognized after replacementHow to monitor the hard disk status behind Dell PERC H710 Raid Controller with CentOS 6?LSI MegaRAID - Recreate missing RAID 1 arrayext. 2-bay USB-Drive with RAID: btrfs RAID vs built-in RAIDInvalid SAS topologyDoes enabling JBOD mode on LSI based controllers affect existing logical disks/arrays?Why is there a shift between the WWN reported from the controller and the Linux system?Optimal RAID 6+0 Setup for 40+ 4TB DisksAccidental SAS cable removal

Срби Садржај Географија Етимологија Генетика Историја Језик Религија Популација Познати Срби Види још Напомене Референце Извори Литература Спољашње везе Мени за навигацијууrs.one.un.orgАрхивираноАрхивирано из оригиналаПопис становништва из 2011. годинеCOMMUNITY PROFILE: SERB COMMUNITY„1996 population census in Bosnia and Herzegovina”„CIA - The World Factbook - Bosnia and Herzegovina”American FactFinder - Results„2011 National Household Survey: Data tables”„Srbi u Nemačkoj | Srbi u Njemačkoj | Zentralrat der Serben in Deutschland”оригинала„Vesti online - Srpski informativni portal”„The Serbian Diaspora and Youth: Cross-Border Ties and Opportunities for Development”оригиналаSerben-Demo eskaliert in Wien„The People of Australia – Statistics from the 2011 Census”„Erstmals über eine Million EU- und EFTA Angehörige in der Schweiz”STANOVNIŠTVO PREMA NARODNOSTI – DETALJNA KLASIFIKACIJA – POPIS 2011.(Завод за статистику Црне Горе)title=Présentation de la République de SerbieSerbian | EthnologuePopulation by ethnic affiliation, Slovenia, Census 1953, 1961, 1971, 1981, 1991 and 2002Попис на населението, домаќинствата и становите во Република Македонија, 2002: Дефинитивни податоциALBANIJA ETNIČKI ČISTI SRBE: Iščezlo 100.000 ljudi pokrštavanjem, kao što su to radile ustaše u NDH! | Telegraf – Najnovije vestiИз удаљене Аргентине„Tab11. Populaţia stabilă după etnie şi limba maternă, pe categorii de localităţi”Суседи броје Србе„Srpska Dijaspora”оригиналаMinifacts about Norway 2012„Statistiques - 01.06.2008”ПРЕДСЕДНИК СРБИЈЕ СА СРБИМА У БРАТИСЛАВИСлавка Драшковић: Многа питања Срба у Црној Гори нерешенаThe Spread of the SlavesGoogle Book„Distribution of European Y-chromosome DNA (Y-DNA) haplogroups by country in percentage”American Journal of Physical Anthropology 142:380–390 (2010)„Архивирана копија”оригинала„Haplogroup I2 (Y-DNA)”„Архивирана копија”оригиналаVTS 01 1 - YouTubeПрви сукоби Срба и Турака - Политикин забавникАрхивираноConstantine Porphyrogenitus: De Administrando ImperioВизантиски извори за историју народа ЈугославијеDe conversione Croatorum et Serborum: A Lost SourceDe conversione Croatorum et Serborum: Изгубљени извор Константина ПорфирогенитаИсторија српске државностиИсторија српског народаСрбофобија и њени извориСерска област после Душанове смртиИсторија ВизантијеИсторија средњовековне босанске државеСрби међу европским народимаСрби у средњем векуМедијиПодациууууу00577267